
Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

9

Abstract— In the past few years, there is an enormous

growth in enterprise computing. Large enterprises have more

than thousands of applications that work in tandem to support

enterprise business processes. The enterprises typically adopt

internet technologies. Enterprise Application Integration

(EAI) provides the option to integrate the different

applications to enhance the functionality and sharing of the

information among different applications. Integration

increases the automation of business process and significantly

reduces the redundancy of data functionality and the IT

infrastructure cost like maintenance, management and

operational.

 Presently, the Formal Methods use mathematical models

for verification and analysis of the Software life-cycle. In this

paper, the focus is on the possible formal levels of Enterprise

Application Integration and proposed a theoretical,

computational and process oriented collaboration model for

integrating formally. Explained different formal method

technologies for EAI. This research will address and propose

solutions of the different enterprise applications while

integrating them in terms of mathematical formalism.

Keywords—Autonomous Robotic System, Complex and

Control System, Enterprise Application Integration, Formal

Methods, Formal specification, Formal Verification, Process

Model, Petri Net, Z Specification Language.

I. Introduction

 The traditional meaning of enterprise is the
company or organization for commercial
purpose. In the IT world, the meaning of the
enterprise is different and is often fuzzy [19].
The enterprise is an organization that follows
some characteristics like size or location of the
company, software, and hardware applications
which are used for the enterprises, and
management of the enterprise.
 Integration is not a new methodology in the
field of Information and Communication
technology and has been used for the past 50
years. The early systems were designed and
developed without concerns of change in
technology and the requirements were

estimated based on the context. Technologies
such internet and e-commerce are mandating
the integration of the internal systems to satisfy
the customer’s needs. The data and
functionalities of different applications need to
be shared. Hence, there is a need to integrate
the applications even if they run on different
platforms for different purposes. EAI is one of
the emergent frameworks to facilitating the
integration of different applications.
 Formal methods are based on mathematical
techniques and notations used for describing,
analyzing and specification of properties in
software systems. These mathematical
techniques are based on predicate logic, set
theory, relation, functions and graph theory [4].
Based on the model of software in the life cycle,
we will get a result from requirement analysis
in the form of informal language. The
specification is the phase of transforming the
informal to formal which satisfies the
requirements. The phase from design to
program corresponds to the development of the
code. The verification and validation are the two
basic principles in the development of the
system. There are many tools and methods for
verification and validation of the system. The
formal verification, formal specification
languages, fundamental concepts of model
checking and theorem proving are discussed in
this paper.
 In this paper, Section 2 gives the details of
EAI. Section 3 provides the different types of
EAI, while Section 4 and Section 5 gives the
fundamentals of the formal methods and their
impact in software engineering. Details of
Formal Methods and some industrial scenarios
are discussed in Section 6 and Section 7. Section
8 explains the case study with one of the
specification language. The proposed work of

Formal Methods for Enterprise Application Integration

Sivasankararao Kotha, T. V. Gopal

sivasankar.res@gmail.com; gopal@annauniv.edu

(1) Department of Computer Science and Engineering, Anna University, College of
Engineering, Guindy Campus, Chennai, India

mailto:sivasankar.res@gmail.com
mailto:gopal@annauniv.edu

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

10

research is discussed in section 9. Finally,
concluded the paper in section10.

II. Enterprise Application Integration

 Every Enterprise strives to improve the
productivity, reduce cost and improve the
efficiency business process. It is possible with the
effective combination of Independent Systems,
Data Exchange and Data Sharing between all
processes of an enterprise. Enterprise
Application Integration (EAI) is developed as a
solution bridge the gap between business
enterprises and IT sector to interact across
different platforms.
 Enterprise Application Integration (EAI) is the
process of integrating the different applications
that were developed by using different
technologies on various platforms. There is a
need for an architecture that provides for
inclusion, interactivity, and context amongst all
the stakeholders in the enterprise system.
 One of the main challenges in the enterprise
applications is interoperability [23]. There is a
need to develop new methodology and
framework for implementing the EAI. That
implemented framework need to be the best fit
for enterprise and it has to satisfy the
requirement specification of the enterprise. New
technologies like cloud computing and Internet
of Things (IoT) are evolving in the market, so
new integration methodologies are needed for
such platforms.
 The main aim of EAI in the enterprise is to
ensure that all of its applications work together
as though it is a single function. Model-driven
development is a good methodology.
 There are different criteria which must be
considered when we integrate the applications.
Reliability of target services, technology
selections of different applications, extensibility,
data format, data coupling and so on. For the
question “Which integration approach best
addresses which of these criteria?” there are
different integration methods. Usually, no
particular integration method which satisfies all
the different criteria and constraints.

III. Types of EAI

 There are different levels of EAI which
depends on many factors including company size
and budget, type of industry, integration and/or
project complexity and so on.
 The four well known levels of integration [17]
are given below,

 Data Level
 Application Level
 Method Level
 User Interface Level

A. Data Level
It extracts data from one database to update
another data base. Sometimes the extracted data
may be transformed before updating the other
database [3].
The best example of the data level is ETL
(Extract, Transform, and Load) tool which can
extract, transform and load data from different
data sources and store in a common repository
called as a data warehouse. Fig.1 represents the
data level integration between the data sources.
 Low cost and low risk are the main benefits of
this level. Because, we are not modifying any
code in the existing applications and no expenses
to developing, testing and deploying new
versions of the applications. The main drawback
of this approach is to maintain the database
design to understand the operations of the data
generated by this approach.

Fig.1. Data-Level Integration

B. Application Level
This is the level of integration it consists of
different interfaces which provided by the
packaged applications to access the information
between packages. Generally, this kind of
integration is done as follows.

• Extracting the information from a source
application through a provided application
interface.

• Convert the data in the understandable
format of the target application.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

11

• Transfer the information to the targeted
application.

“Message Broker” approach is the most common
usage to implement this kind of integration [19].
In this approach, it controls the flow of
information through hub and bus frameworks.
 Fig.2 shows the application level integration. The
interfacing between the different applications is
relatively easy due to applications interfaces are
provided by the applications. This is the main
advantage of this level of integration. The
disadvantage of this approach is the cost of the
message broker.

 Fig. 2. Application Level Integration

C. Method Level
 Method-level integration is similar to
application level interface but at a lower level of
granularity. The main idea behind this level does
not even share the functions but to share the
different methods used in this function. Reusing
approach is emphasized in this level of interface
[29]. So, all other enterprise applications need to
implement the same methods can use them
without having to rewrite it. Fig.3 denotes the
method level integration between different
methods.
 This integration level can be done with a lot of
technologies like Java RMI, CORBA, and DCOM
and so on. The emerging trend in implementing
this approach is Web services [30]. The methods
are shared easily by using web services.
 The ability to reuse business logic and sharing
the methods make this approach very suited for
EAI. This method supposes the modification of
existing applications to allow the sharing at such
a low level.

 Fig.3. Method Level Integration

D. User Interface Level

 It is used for bundling applications into one by
using their user interfaces as a common point of
integration. It consists of replacing existing user
interfaces of legacy systems and the Windows,
Icons, Menus, and Pointer based interfaces of
recent applications with standardized interfaces.
User interface level integration is less expensive
and less flexible than other approaches. The code
of the existing applications is not modified [7].
The given below fig.4 represents the user
interface level integration between two legacy
systems.

 Fig.4. User Interface Level Integration

In this paper, three more levels in enterprise
application integration are proposed. They are,

 Architecture Level
 System Level
 Formal level

E. Architecture Level
 Every component of the enterprise uses
different data formats, various programming
languages, and even different operating systems
with a standard interface. Service Oriented
Architecture (SOA) [6] is the best model to
integrate the various components at the
architecture level.
 It integrates different services from different
vendors, independent platforms, and different
technologies [15]. The main advantages of this
level integration are Loose Coupling, High
scalability, and flexibility. It enables
interoperability across heterogeneous systems.
F. System Level
 System level integration is the process of
combining different systems and software to
behave like one physical and functional system.
The system level integration is more important in
the modern internet world. Many systems and
applications are interconnected to different
systems and sometimes it needs to connect
already deployed systems. Fig.5 shows the
system level integration.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

12

 ESB (Enterprise Service Bus) approach is the
type of integration approach in which all
subsystems will be communicated to other
subsystems. The main benefits of this level
integration are,

 More efficiency
 More profitability

 Fig. 5. System Level Integration

All levels of EAI including the proposed levels are
shown in the figure 6.

 Fig. 6. Total level of EAI

 Formal level of enterprise application
integration will be discussed in the next section.
There is a lot of research going on in the
Enterprise Application Integration [EAI]. EAI is a
very complex integration mechanism because of
its distributed nature. Moreover, the
development process and requirements of

applications change rapidly. A new methodology
and framework are needed to develop and
achieve the meaningful EAI to integrate even the
applications built for cloud computing and IoT.
 Data security and privacy is another challenge
in the EAI. Presently, there are not many
comprehensive efforts in maintaining data
security and privacy. EAI is not a simply
integrating the applications built on different
platforms. It is also to facilitate cooperation
between different processes and business
customers. The core challenges in EAI are as
follows. EAI today demands the ability to
integrate millions of sensors and computers, big
data analytics to wireless networks. There is a
need for theories and formal proofs to verify the
design and development of EAI.

IV. Formal Methods
 Formal methods can be present in all phases of
a software project. The Project manager will
decide when these methods should be used in
different phases to detect more defects. Most of
the time we can ensure that to get defect free
software. Usually, software systems almost
always contain some errors, even after rigorous
testing in development and user acceptance.
Some surveys saying that minimum 3 to 20
errors may occur from every thousand lines of
code at the time of software putting into service
and after finishing the normal testing and user
acceptance testing[13]. When the developer has
used formal methods, even in part of
development, it becomes easy to identify the
defects easily, quickly and thoroughly than the
traditional methods.
 Formal methods are categorized into two
categories model–oriented and property–
oriented approaches [31]. In a model-oriented
approach, the system’s behaviour is defined by
creating a model of the system in terms of
mathematical structures like tuples, functions,
sets, sequences, relations and so on. But, in
property-oriented approach, the behaviour of the
system is indirectly defined by expressing its
properties in the form of a set of axioms which
satisfies the system. The Examples of popular
model-oriented specification techniques are Z
[28], CSP, and CCS and so on. Model-oriented

EAI

Data Level

Application Level

Method Level

User-Interface level

Architecture Level

Formal Level

System Level

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

13

approaches will use in future software life cycle
process also because changes of some
specification will effect on the entire
specification of the system. Property-oriented
approaches are suitable for requirements
specification because they can be easily changed.
They specify a system as a conjunction of axioms
and you can easily replace one axiom with
another one.

V. Impact of the Formal Methods on Software
Systems

 Reliability is one of the major challenges in the
software and sometimes it is very critical for the
people. When a failure occurs, it leads to
disasters where people die or large sums of
money are lost. Such software is very complex
and it is not easy to verify the correctness. It is
often full of bugs and results in delay, over cost
and many usability problems. The best and
famous example is the Ariane 5 rocket explosion
in 1996 that was due to a software bug (a data
conversion of a too large number). To overcome
such problems, it has been suggested to use
formal methods in software, especially in the
safety critical system [5, 14].
 Formal methods help us to discover the errors
in the early stage of the life cycle in the software
development process. It reduces the overall cost
of the project. Formal methods will provide the
kind of evidence and give the solid reason for
trust in the product. It is needed in heavy
industries like avionics, telecommunications, and
automobiles and so on where half of the projects
fail. Formal methods for end-to-end flow control
in EAI are necessary.
 The benefits of formal methods include a
decrease in the rework process, automatic
verification of some properties and most
importantly finding errors in early stages. Formal
Methods can also be used in reverse engineering
for the model and analyze existing systems.
Formal methods do not give any guarantee to the
correctness of the system but can be used to
increase the level of correctness.
 The primary reason for failures in software
engineering is unstable requirements and
specifications [11, 31]. The formal methods use
mathematics to structure and analyze the

requirements and specifications in a manner
where changes can be systematic. Formal
methods help the engineers to construct more
reliable systems.

VI. Basics of Formal Methods
A. Formal Specification
 A specification is said to be formal if it is
expressed as a notation or formal specification
language in which the notations are based on
mathematical logic and set theory. The formal
specifications are used in the analysis and design
phases to record the requirements and design
decisions in the development lifecycle [10].
 It can be used to predict the behaviour of the
product before implementation by using some
formal analysis and test cases.
 The formal specification is characterized as
being abstract and a refinement of requirements
analysis phase of the development lifecycle. A
specification is created in the requirement
analysis phase and it should describe the
requirements of the software system to be
implemented. The mathematical notation must
prove the properties the formal specifications in
order to verify and validate them.
 Verification is only concerned with the
correctness of a product with respect to its
specification [18]. Another question is whether
the specification correctly describes the problem
to be solved. Validation is the act of investigating
the latter. Specifications properties can be
validated formally by using some mathematical
statements. It can also be validated by testing
when the specifications are executable form.

B. Formal Specification Languages
 A specification language is a formal language
which is used in the requirement analysis phase
and design phase of the software design lifecycle
to describe the system. Many specification
languages exist that are suited for different kind
of systems and different contexts. Each formal
language has its own mathematical framework. It
consists of notations of models and notation of
statements that can be used to express the

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

14

properties of models that must be satisfied by
the statements.
 A specification can be a syntactic presentation
of a model in which case it is said to be model-
oriented specification language. This model is
created using well understood mathematical
entities such as functions and sets. Ex: B [26],
VDM [22], Z [28] and so on.
 A specification can be a syntactic presentation
of a collection of statements or properties in
which case it said to be property oriented
specification language. This language is
constructed using logical axioms, operations and
their relationships and temporal logics. Example:
CASL, Maude, and cafeOBJ and so on. For
specification of concurrent systems, there is a
famous language called CSP and CCS, it is
constructed using process algebra.

C. Formal verification
 Verification is the act of investigating whether
the product is correct i.e. satisfies its
specification. When mathematics is used for
verification process it is called as formal
verification. During the verification of the system
design, a large number of theorems are proved.
All these proofs are informal (not in
mathematical form) and keeping track of the
details of the proofs and interrelationship among
the various theorems can be overwhelming. To
ensure high safety, security and reliability proofs
must be carried out with a high degree of
precision. When the formal specification is used
in the design and requirement phases, it is
possible to use formal verification technique.
Formal verification uses mathematical logic [33].
 The advantage of formal verification is
considerable in any context to find the defects
before the system is implemented. The major
approaches of formal verifications are theorem
proving and model checking.

1) Theorem Proving
 It is mathematical logic and proof for a
statement to be true. The statement is known to
be true and is said to be theorem when the act
results in a proof. If a proof is not found, one
cannot conclude that the statement is false.

 There are many ways to prove that
implementation satisfies the specifications. The
proof can be either manual or automated. It is
not suitable for large software and hardware
systems. Proofs can also be interactively checked
by the machine based on the steps provided by
the human. They can give a guarantee of
correctness if the theorem prover is correct.
Automated theorem prover can solve the
problem within a reasonable time. It is faster
than interactive proving. Many problems cannot
be solved automatically [10].
 This approach needs large manpower to prove
small theorems. It is difficult to prove large and
hard theorems. It is usable only by the experts. It
requires a deep understanding of both system
design and methodology. There exist many
programming tools which construct formal
proofs [4] some of them are given below.
 Based on the proof checker Meta Math and
Mizar so on are the programming tools in that it
can check automatically whether the suggested
proof is actually a correct proof of the given
theorem.
 Based on the interactive theorem prover PVS,
Isabella, HOL, ACL, and COQ so on are the tools
that construct a correct proof by interactively.
This is a most common form of tools.
 Based on the automated theorem prover SPASS
and Prover 9 so on are the programming tool
that automatically searches for a proof of the
given theorem. These tools are most difficult to
create as it is and computationally hard to find a
proof.

2) Model Checking
Model checking is the automated approach to
verify that a model of a system satisfies a formal
specification of requirements to the system. In
this approach, the models describe how the state
of the system may evolve over time. Tools that
automatically perform model checking are called
model checkers.
 The process of the model checker is to create a
model of the system as a first step and to
formalize the requirement by obtaining a formal
specification of the system. The model checker
returns information about whether the model
satisfied the property of the specification. Model

https://en.wikipedia.org/wiki/Function_(mathematics)

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

15

checking is a promising technique for the
improvement of software quality. A model of a
program consists of states and transitions, and a
specification or property is a logical formula.
 A model checker is a tool which automatically
performs the model checking. Many of model
checkers exist. Each model checker has a
different specification language for expressing
the model and expressing the properties [20]
some notable examples of model checker are
SPIN, NUSMV, and SAL.
 Here we can compare the model checking and
theorem proving, Model checking is fully
automated and much easier and faster to use
than the theorem proving. Model checking can’t
be used for generalization of generic parameter
system.

VII. Impact of Formal Methods

A. Impact of the Formal Methods on Avionics
 Formal Methods are being incorporated in the
aircraft and spacecraft software design and
verification process [27] Pete Manolios, USA,
focuses on integrated modular avionics,
verification cost, and system integration. Marc
Pantel, FRANCE, focuses on developing
embedded systems in avionics and safety
requirements. Guillaume Brat, NASA, USA,
focuses on sound, precise and scalable static
analyses of flight control system [9].
 There are two important methods for verifying
the avionics formally. Deductive Method and
Abstract interpretation based static analysis. The
first deductive methods are based on a hoare
logic concept with tools of Caveat and Frama-C.
The second technique is based on abstract
interpretation with automated tools like Astree,
aiT, Stackanalyzer, and Fluctuat.

B. Impact of formal methods on Automobile
 The automobile industry is rapidly changing
from a mechanical industry to one driven by
innovation in electronics and embedded
software. Many new safety and convenience
features are being designed in the presence of
traffic and whether condition, driving skills level,
road condition, formal methods are needed.

C. Impact of formal methods on Virus-malware
 Researchers in academia and industries are
beginning to develop anti-virus technologies
founded on formal methods of analyzing
programs. These methods with mathematical
foundations have mostly been developed for
optimizing compilers and more recently for
hardware and software verification.
 Some formal models [43] of virus
transformation are developed and tested the
against virus attacks. Proposed [44] some
nonlinear mathematical models to study the role
of antivirus program in the computer network
and analysed. Present malware detection tools
are operated by searching for pattern matches
with respect to signatures of known malware.
These detectors generally in capable of
identifying newly released malware. We need a
formal method to investigate the malware
detection and behaviour.

D. Impact of Formal Methods on
Telecommunication
 Telecommunication services are defined as a
service that is provided by the public switched
telephone network. The main system
requirements of telecommunication services are
to communicate between user and devices and
interaction between two communication systems
with one another.
 Some characteristics of telecommunication
services are [8] concurrency, distribution,
relativity, code size, complexity, large-scale
environment, reliability, availability, and
interoperability so on. The telecommunications
industry has developed many standards for
fulfilling the requirements and characteristics
[2].
Mostly SDL (Specification Description Language),
Z and PROMELA [42] are used in the
telecommunication industry.

E. Impact of formal methods on Defense
 The use of Formal Methods is mandatory for
certain classes of military software. The major
problems are the integration of different
components and subsystems, such as radar,
electronic support measures, navigation,
communication and mission data processing.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

16

Colored Petri Nets [40] [41] are one of the formal
specification language and graphical oriented
modelling language for the design, specification,
and verification of distributed systems. One of
the key technical challenges of defense is to
develop high assurance safety critical cyber
system.

F. Impact of formal methods on Robotics
 An autonomous system is an artificially
intelligent entity which is interacting and make a
decision by means of inputs and the robotic
system is a physical entity that interacts directly
with the physical world. So we consider
Autonomous Robotic System as a machine that
uses Artificial Intelligence (AI) technology and
physically interacts in and out with the real
world. Autonomous Robotics is a very complex,
hybrid system and combination of both hardware
and software. Nowadays, Autonomous Robotics
is being used tremendously in many fields like
Driverless cars, Pilotless Aircrafts, Industries and
acts as Assistants In many domestic and
international organizations.
 The common challenges of autonomous
robotics systems are heavily dependent on
software control, exact decision making, and
deployment in critical scenarios, along with it
requires strong verification methods to deal with
all mentioned challenges. Here the concept of
Formal Methods is needed which is a
mathematical-based technique, for both
verification and specification of systems, to
ensure the correctness and evidence for the
robotic systems.
 Most of the formalisms used to verify or
specify the robotic systems. We can divide the
formalisms like set-based, automata, logics,
process algebras, etc. Set-based formalism like
the Z and B-method are representing a system
using set theory logics and capturing the
manipulation of data. [35] Describe a formal
reference model of a self-adaptive system called
FORMS by using Z specification language. [36]
Proposed a Jaza animator by using Z specification
language and java debugger to check the run
time monitoring system. This is used as a model

for a robot assembly system in the NASA ANTS
project [45].
 Petri Net and Finite state automata are the
formalisms to specify the behaviors of the
system. [40] In that they mentioned the Petri Net
logic to capture the robot plans. The Petri Net
models are used to analyze the deadlock and
resource usage of robots.
 Temporal logics formalisms are the most
relevant formalisms for autonomous robotic
systems to analyze and verify the systems. [37]
Proposed some rules and assumptions by using
Linear-time Temporal Logic (LTL) to verify the
autonomous pilotless aircraft. [38] Represent the
model by using the Probabilistic Temporal Logic
(PTL) for safety rules and the environment of the
autonomous robot assistants. These verification
and specification results improve the confidence
in the safety of the robot’s high-level decision-
making.

VIII. Case Study

 In this section, we present a case study with

two applications. First application had

explained the details of the faculty name and

their contact number. The second application

includes the address of the faculty with some

authentication procedure.

 The objective of the first application (Michael

Butler 2001) is to construct the telephone

directory system in the university to maintain

the faculty names and their contact numbers.

The specifications or requirements are like,

 – A faculty may have one or more telephone

numbers

 – Must be able to add new faculty and/or

new entries

 – Must be able to remove faculty and/or

existing entries

 – Must be able to query the system for a

faculty or number

 The system behaviour is implemented by Z

[32] [28] schemas. The schemas are described

as abstract specifications and it is also

implemented as concrete designs with added

details to provide sufficient confidence about

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

17

the specification before the coding. Our Z

schema must satisfy the above mentioned

requirements.

 The below schema represents the creating

the PhoneDir for storing the faculty name and

contact number.

 PhoneDir

faculty:ℙ person

directory: person↔phone

dom directory ⊆faculty

 Phonedir′

Faculty′:ℙ person

Directory′:person↔phone

Dom directory′⊆faculty′

 ΔPhoneDir

Faculty,faculty′:ℙ person

Directory,directory′:person↔phone

dom directory⊆faculty

dom directory⊆faculty′

 ΞPhoneDir

ΔPhoneDir

Faculry′=faculty

Directory′=directory

 The schema Addmember represents the adding

of faculty name in the directory. It will check

whether the faculty already existed in the

directory or not. If it does not exist it will be

added to the faculty data and it will modify the

faculty and directory automatically. The next

schema Facultyexists will execute if faculty

already existed.

 Addmember

Δphonedir

name?:person

rep!:MESSAGE

name?∉faculty

faculty′=faculty∪{name?}

directory”=directory

rep! = “Ok”

 Facultyexists

Δphonedir

name?:person

rep!:MESSAGE

name?∈faculty

rep!=”Faculty already exists”

 The below schema AddEntry represents the

adding the entry of the faculty name and phone

number into the directory.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

18

 AddEntry

ΔphoneDir

name?:person

number?:phone

rep!:MESSAGE

name?∈faculty

name?↦number?∉directory

directory′=directory ∪{name?↦number?}

faculty′=faculty

rep!= ”Ok”

 Removing the faculty and removing the total

entry were represents in the below schema.

 Removefaculty

ΔphoneDir

Name?:person

rep!:MESSAGE

name?∈faculty

faculty′∈faculty∖{name?}

directory′={name?}⩤directory

rep!= ”Ok”

 RemoveEntry

ΔphoneDir

Number?:phone

Name?:person

rep!:MESSAGE

name?↦number?∈directory

directory′=directory∖{name?↦number?}

faculty′=faculty

rep!= ”Ok”

 We can retrieve the faculty details and finding

the contact number of the particular faculty by

using given below schema.

 Findnumber

ΞphoneDir

name?:person

number!:ℙphone

rep!:MESSAGE

name?∈faculty

name?∈dom directory

number!=directory⦇{name}⦈

rep!= ”Ok”

 Findname

ΞphoneDir

Number?:phone

name!:ℙ person

rep!:MESSAGE

number?∈ran directory

name!=directory′⦇{number}⦈

rep!= ”Ok”

 The above schemas (Application 1) represents

the storing of the faculty name and contact

number of the particular faculty.

 The second application saying that storing

the address of the particular faculty with their

contact number. Schema of second application

is showing in the below schema.

 Addrdirectory

dir: PHONE→ADDRESS

 Addressbook

Address:ℙ ADDRESS

dir:PHONE→ADDRESS

dom directory⊆Address

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

19

 Addressbook′

Address′:ℙ ADDRESS

Addrdirectory′:PHONE→ADDRESS

dom directory⊆Address′

 ΔAddressbook

Address,Address′:ℙ ADDRESS

Addrdirectory,Adddirectory′:PHONE→ADDRESS

dom directory⊆Address

dom directory⊆Address′

 ΞAddressbook

ΔAddressbook

Address′=Address

Addrdirectory′= Addrdiectory

The schema Addressbook is the main directory in

which can store the details of address along with

contact number. Addaddress represents the

adding of address. The address will add

automatically if it does not exist already,

otherwise, we will get the message like address

already exist. The schema of the above

explanation represents like,

 Addaddress

ΔAddressbook

Addr?:ADDRESS

rep!:MESSAGE

Addr?∉Address

Address′=Address∪{Addr?}

Addrdirectory′=Addrdirectory

rep!= “ Ok”

 Addressexist

ΔAddressbook

Addr?:ADDRESS

rep!:MESSAGE

Addr?∈Address

rep!= “Address alerdy exist”

 The given schema represents that adding total

entry into the directory Addressbook. Here also

we will get the already existing message once it

already exists, otherwise, it will add in to the

directory.

 Addaddressentry

ΔAddrdirectory

Addr?:ADDRESS

Number?:PHONE

rep!:MESSAGE

Addr?∈Address

number?→addr?∉Addrdirectory

Addrdirectory′=Addrdirectory∪{number?→addr?}

Address′=Address

rep!=”Ok”

 Entryexist

ΔAddrdirectory

Addr?:ADDRESS

Number?:PHONE

rep!:MESSAGE

number?→addr?∉Addrdirectory

rep!= “ Entry Alreay Exist”

 The schema FindAddress in which we can

retrieving the address by using the contact

number.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

20

 FindAddress

ΞAddrdirectory

number?:PHONE

Addr!:ADDRESS

rep!:MESSAGE

number?∈dom Addrdirectory

Addr!=Addrdirectory ⦇number?⦈

rep!=”Ok”

 The total schema of linking address to the

phone number is,

Link address to number ≙ Addaddressentry ∪

Addressexist ∪ Entryexist

 The ‘Z’ schema is very relevant and easily to

understand. The static and dynamic

characteristics of a system are described by Z

schema. The states, relationship between states,

some possible operations, and relationship those

operations are can tell as static and dynamic

characteristics of the system.

 Consider, every application a separate

development project. There are many reasons to

introduce the new applications or projects with

extended features i.e., maybe cost effective for

development and maybe requirement

specification. Now a days the pragmatic of

software engineering become very expansive. It

either has to chuck the old application or

software and it includes some new features to

improve the application.

 Most of the time information security problem

will happen at the end of execution of the

application. In this case study, there are some

issues while authenticating whether the given

address is correct or not. The enhanced done in

this application to improve the authentication

that linking the Aadhar Card to each and every

faculty member by using their address. So that

the issue in this case study can easily recover.

 The below Z schema represents the linking

of Aadhar Card with faculty address.

Aadhardirectory is the main directory of this

application.

 Aadhardirectory

dir: Address↔Aadhar

MESSAGE ::= “Ok” | “Already Exist”

 The Addaadharentry schema is using for

adding the Aadhar number and Address.

Findaddress represents retrieving the address

by giving input as an Aadhar number.

 Addaadharentry

ΔAadhardirectory

Anumber?:AADHARNUMBER

Addr?:ADDRESS

rep!:MESSAGE

Addr?∈Address

Aadhardirectory′=Aadhardirectory ∪

{ Addr?→Anumber?}

rep!= “Ok”

 FindAddress

ΞAadhardirectory

Anumber?:AADHARNUMBER

Addr!:ADDRESS

rep!:MESSAGE

number?∈dom Aadhardirectory

Addr!=Aadhardirectory ⦇Anumber?⦈

rep!=”Ok”

 Like this, every software must authenticate the

data which can enter into the application. Not

only in terms of data, even must verify in terms

of the product also. Whatever verification or

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

21

authentication is to be needed, must be done

before itself or while giving the specification in

the top level of the process. Finally, we can

identify the authenticated and non-authenticated

persons separately.

 Integration plays a key role in this case study

to get the complete product and can access

easily.

 Because of formal specification, it appears that

it is a seamless integration here we are not

calling the additional module and not built other

version of the software but it works seamlessly.

The advantage of having formal specification is

second application is more or less similar to the

first one with something more. In the field of

software engineering, we faced a lot of troubles

many times because of this type of problems. The

formal specification will definitely improve the

way we are dealing with evolving software

specification. It appears easily connectable. If

only all application developers are used this

formal specification within less span of time we

would say that they all similar. We don’t have

worry about what they are used, but by the

formal specification, all application developers

would think that all applications are same under

a product. This is the way software specification

evolves for every integrated application.

 The application development method has

become very dominant because we are working

on shorter life cycles. In this case study, the

address book data is integrated with the existing

phone number of faculty. Data level integration is

playing the key role in this work and

consequently all levels of integrations like

method level, applications level, architecture

level, formal level and so on.

 To integrate different applications, one has to

consider all levels of SDLC [Software

Development Life Cycle] and levels of EAI

[Enterprise Application Integration] like data

level, application level, architecture level and

system level and so on.

 Every legacy system has been facing serious

constraints in working with different modern

applications. The cost of a working archived /

legacy application is much higher than the

changing the application. It becomes to extend

the functionalities of existing projects. Here the

third party maintenance plays a key role in

maintaining the projects. Even though the

project is under maintenance, because of high

cost and more drying the project, the entire

project is scrapped. Enterprise Application

Integration plays a dominant role in this

situation once the application has retired. Buy

one more application or thinking about second

application if the first application had retired is a

common solution. But some sunken work in the

first application can be used in the second

application.

 This case study would deal with the

importance of application integration and

evolving software specification in which the

applications are developed by formal

specification language like Z. However, there are

some limitations in Z formalism as an integrator

in this case study.

IX. Proposed Work

 The authors are working on several other case

studies and how they map to the proposed levels

as in Figure 6.

 From the past five decades bringing the

practice of software in terms of application

development, integrating applications and

formal methods together. The fitting into levels

and mapping case studies to different levels is a

challenge. There is a need for factoring the

hardware architecture for supporting the formal

verification of performance.

 A grammar which will decide the level as in

Figure 6 can result in automated verification and

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

22

proving. Context Free Grammar [CFG] [34] plays

a key role in controlling functionalities of the

system by using grammatical rules and it is

preliminary for understanding the way formal

proofs in computing are constructed. Eventually

a generic formalism such as Z will be used for

specifying the evolving complex systems. The

integration of CFG rules and Z notation will

increase the modelling power of the complex

system [25]

 A better understanding of the behaviour of

the system is very important. Behaviour of the

each object and system will change based on the

requirements. Commonly, interaction diagrams

are used for representing the behaviour of the

system and model. Sequence Diagram and

Collaboration Diagram are the two ways of

representation of system behaviour [24].

 It is difficult to get a complete ordering of

events to match the hierarchy or levels. Hence

getting the correct sequence of actions to

formally prove is difficult [21] thus the Sequence

Diagram becomes one of the drawbacks of

Unified Modelling Language (UML) while

verifying formally. In complex or large systems

we can able to develop many sequence diagrams.

Process Model is one of the alternate method for

sequence diagram. That is the reason we are

going to process view model. It deals with

dynamics aspects of the system, explains the

system processes and how they communicate

with each other in the run time environment

[12]. It addresses the concurrency, performance,

scalability and so on. It is a group of activities in

which all activities must work together towards

a common goal.

 Collaboration Model is the one which has a

group of roles and connectors with some

attributes [24]. It mainly defines the achieving of

the goal not how could accomplish that. Actions

will be done quickly and problem-solving will be

faster and more effective. Reuse is one of the

main usage of the collaboration model [16]. A

design which is implemented by collaboration

can apply in various situations also.

Collaboration Model may need Service Level

Agreements, Protocols, Non-Disclosure

Agreements, Intellectual Property and such

support systems.

 Computational, Process and Collaboration

(CPC) is a relatively new research area for

integrating the different applications throughout

the levels of enterprises and software systems

formally.

 Open System Interconnect [OSI] is a very

successful approach in the layered architecture

for Computer Networking [1]. The cost of

ownership is very high in the integration. Early

researchers developed request broker or

resource broker models in which they connected

some objects and components using Service

request and Service Oriented Architectures. The

emergence of IoT and Bring Your Own Device

[BYOD] have been even more challenging in the

implementation at the Operational levels.

X Conclusion

 Enterprise Application Integration (EAI) mainly

focuses on the design and implementation of the

enterprise solutions. The demand for integration

has motivated the rapid growth of technologies,

usage of internet and development of

applications with new platforms like Cloud

Computing, Internet of Things [IOT] and

Artificial Intelligence technologies and so on.

Basics of the EAI and Formal methods including

usage of formal methods in industry scenario are

explained. Some research directions like Context

Free Grammar, UML, Collaboration and Process

Models on these topics are indicated. It is

proposed that every application should satisfy all

levels of EAI and must be satisfied phases of

software life cycle while integrating the

applications. One case study with Z specification

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

23

language representing the proposed method to

integrate different applications formally is

included in this paper.

References
[1] Andrew, S. Tanenbaum., David, J. Wetherall., Computer

Networks, 5th ed., Prentice Hall, Pearson Education.,2013.

[2]Ardis, M.A., Formal methods for telecommunication

system requirements: A survey of standardized languages,

Springer Annals of Software Engineering, 3(1), 157–187,

1997.

[3] Bettino, E., Ferrari, E, XML and data integration, IEEE

Internet Computing, 5(6), 75 – 76, 2001.

[4] Bjorner, D., Havelund, K.,40 years of formal methods:

Some Obstacles and Some Possibilities, Springer, 8442, 42–

61, 2014.

[5] Bowen, J., Stavridou, V., Safety-Critical Systems, Formal

Methods and Standards, Software Engineering Journal,

8:189-209, 1993.

[6] Chen, X., Xu, H., One service-oriented architecture based

enterprise application integration platform, 9th

International Conference on Advanced Communication

Technology, Volume 1, 746-751, 2007.

[7] Daniel, F., Yu, J.,Benatallah, B., Understanding UI

integration: A survey of problems, technologies, and

opportunities, IEEE Internet Computing, 11,59-66,2007.

[8] Dietrich, F., Hubaux, J. P., Formal methods for

communication services: meeting the industry

expectations, Journal of Computer Networks. 38(1), 99-

120., 2001.

[9] Feron, Eric., Formal methods for aerospace

applications: In Formal Methods in Computer-Aided Design

(FMCAD),IEEE. 3-3.

[10] Haxthausen, An Introduction to Formal Methods for

the Development of Safety-critical Applications, Technical

University of Denmark, Lyngby, Denmark, 2010.

[11] Hussain, S., Dunne, P., Rasool, G.:Formal Specification

of Security Properties using Z Notation, Research Journal of

Applied Sciences, Engineering and Technology, 5(19), 4664-

4670,2013.

[12] Inoue,K., Ogihara, T., Kikuno, T., Torii, K.: A formal

adaption method for process descriptions, ACM 11th

international conference on Software engineering, 145-

153,1989.

[13] Ioana Rodhe, Martin Karresand.: Overview of formal

methods in software engineering, FOI, Swedish Defence

Research Agency, 2015.

[14] Jonathan Lockhart, Carla Purdy, Philip Wilsey.: Formal

Methods for Safety Critical System Specification, IEEE 57th

International Midwest Symposium, 201-204, 2014.

 [15] Jujian, Z.:Apparel enterprise application integration

model based on service-oriented architecture, ICAL'09,

IEEE International Conference on Automation and Logistics,

1374-1377,2009.

[16]Kusumasari, T.F., Supriana,I., Surendro,K.,

Sastramihardja,H.:Collaboration model of software

development, International Conference on Electrical

Engineering and Informatics (ICEEI), 1-6,2011.

[17] Laftsidis, A.: Enterprise Application Integration. IBM

Sweden,2003

[18] Laurent, O.: Using formal methods and testability

concepts in the avionics systems validation and

verification (V&V) process, Third International Conference

Software Testing, Verification and Validation (ICST), 1-10,

2010.

[19]Linthicum,D.S. Enterprise application integration.

Addison-Wesley Professional, 2000.

[20] Michael, Butler. : Introductory Notes on Specification

with Z, Department of Electronics and Computer Science.

University of Southampton.2001.

[21] Minhas, N.M., Qazi, A.M., Shahzadi, S., Ghafoor, S.:An

Integration of UML Sequence Diagram with Formal

Specification Methods—A Formal Solution Based on

Z, Journal of Software Engineering and Applications, 8(08),

372-383, 2015.

[22] Muller, Andreas.: VDM: The Vienna Development

Method, Research Institute for Symbolic Computation

(RISC), Johannes Kepler University Linz, Austria,2009.

[23] Payton, J., Gamble, R., Kimsen, S.:The opportunity for

formal models of integration,2nd International Conference

on Information Reuse and Integration, 2000.

[24] Rumbaugh, J., Jacobson, I., Booch, G.:Unified modelling

language reference manual, Pearson Higher Education,

2004.

[25] Sabir, N., Ali, A. Zafar, N. A., Linking finite automata

and formal methods enhancing modelling power for

complex systems, IEEE International Conference on

Computer Science and Information Technology. ICCSIT.58-

63.2008.

[26] Schneider, S., The B-Method: An Introduction.

Cornerstones of Computing, Palgrave, 2001.

[27] Souyris, J., Wiels, V., Delmas, D., Formal Verification of

Avionics Software Products, FM '09 Proceedings of the 2nd

World Congress on Formal Methods, Eindhoven,

Netherlands.532–546, 2009.

[28] Spivey, J. M., The Z Notation, Reference Manual.

Programming Research Group, International Series in

Computer Science Prentice Hall International (UK)

Ltd.1992.

Research paper ISSN 2603-4697 (Online) Complex Control Systems Vol. 3, No 1, 2021, 9-24

24

[29] Staab,S., Benjamins, V. R.,sheth, A., Web services: been

there, done that? , IEEE Intelligent Systems, 18(1), 72 –

85.2003.

[30] Vinoski, S., Integration with Web services, IEEE

Internet Computing, 7(6), 75-77. 2003.

[31] Vojislav, B. M, Dusan, M. V., Formal specifications in

Software development: an overview, Yugoslav Journal of

Operations Research, 1, 79·96. 1997.

[32] Woodcock, J. C. P., Davies, J., Using Z: Specification

Refinement, and Proof”. Prentice Hall International. 1996.

[33] You, J., Li, J., Xia, S., A survey on formal methods using

in software development, International Conference on

Information Science and Control Engineering, IET, 1–

4.2012.

[34] Zafar, N. A., Khan, S. A., Alhumaidan, F., Kamran, B.,

Formal Modelling towards the Context Free Grammar, Life

Science Journal, 9(4).988-993.2012.

[35] D. Weyns, S. Malek, and J. Andersson. FORMS: a

FOrmal Reference Model for Self-adaptation. In

Autonomous Computer., page 205. ACM, 2010.

[36] H. Liang, J. S. Dong, J. Sun, and W. E. Wong. Software

monitoring through formal specification animation.

Innovation System Software Eng., 5(4):231, 2009.

[37] M. Webster, M. Fisher, N. Cameron, and M. Jump.

Formal Methods for the Certification of Autonomous

Unmanned Aircraft Systems. Volume 6894 of LNCS, pages

228–242. Springer, 2011.

[38] P. Gainer, C. Dixon, K. Dautenhahn, M. Fisher, U.

Hustadt, J. Saunders, and M. Webster. CRutoN, Automatic

Verification of a Robotic Assistant’s Behaviours. In Form.

Methods Ind. Crit. Syst., volume 10471 of LNCS, pages 119–

133. Springer, 2017.

[39] V. A. Ziparo, L. Iocchi, D. Nardi, P. F. Palamara, and H.

Costelha. Petri Net Plans: A Formal Model for

Representation and Execution of Multi-robot Plans. In

Autonomous Agents Multiagent System., volume 23 of

AAMAS, pages 79–86, 2008.

[40] Bowden,F.D., Petri Nets and their Application to

Command and Control Systems, Defence Science and

Technology Organization Canberra Australia. 1996.

[41] Jensen, Kurt. A brief introduction to coloured petri

nets. In International Workshop on Tools and Algorithms for

the Construction and Analysis of Systems, pp. 203-208.

Springer, Berlin, Heidelberg, 1997.

[42] Zave, Pamela. Formal description of

telecommunication services in Promela and Z. NATO ASI

SERIES F COMPUTER AND SYSTEMS SCIENCES 173, 395-

420, 1999.

[43] J. Morales, P. Clarke, Y. Deng, and B. M. Golam Kibria,

Testing and evaluating virus detectors for handheld

devices, Journal in Computer Virology, vol. 2, pp. 135-147,

2006/11/01 2006.

[44] J. B. Shukla, G. Singh, P. Shukla, and A. Tripathi,

Modelling and analysis of the effects of antivirus software

on an infected computer network, Applied Mathematics

and Computation, vol. 227, pp. 11-18, 1/15/ 2014.

[45] https://attic.gsfc.nasa.gov/ants/

https://attic.gsfc.nasa.gov/ants/

