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Abstract— The paper presents mathematical methods for 
the processing and analysis of cardio data obtained by the 
photoplethysmographic method. Standardized linear methods 
(time and frequency domain) and non-linear methods (Poincaré 
method) were applied to study heart rate variability in two 
groups of recordings - of healthy people and heart disease 
individuals. A study was conducted to detect the relationship 
between the age of individuals and the values of various heart 
rate variability parameters. A statistical analysis was performed 
to determine the significance of the obtained results. The 
conducted analyzes show the existence of a dependence between 
the age of the studied population and the values of the variability 
parameters. The research shows the need to take diligent care of 
heart health as we age. A contribution in this direction is 
modern Information and Communication Technologies, 
without which people's lives today are unthinkable. 

Keywords— Cardiovascular Diseases, Heart Rate Variability,   
PPG.  

I. INTRODUCTION  
In recent decades, cardiovascular diseases have been 

among the leading causes of death worldwide. At the same 
time, the accelerated development of technologies makes it 
possible to monitor the activity of the cardiovascular system 
of the human body on a daily basis. To date, more and more 
miniature sensors are being produced that can be used to 
record heart activity. The small size of these sensors makes it 
possible to incorporate them into convenient portable devices, 
with which to examine important indicators such as the level 
of oxygen content in the blood and the level of stress (an 
indicator that is gaining more and more popularity in parallel 
with its proven utility and effectiveness for determining the 
health status of the person). 

Photoplethysmography (PPG) offers a simple optical 
method for measuring and tracking heart rate. 
Photoplethysmography measures variations in blood volume 
in tissues through the use of optical sensors and is increasingly 
being used to monitor human health. The main advantage of 
this technology is that it offers a non-invasive method of 
measuring blood volume variations, using a light source and a 
photodetector located on the surface of the skin. The use of the 
PPG signal in heart rate estimation has been increasing in 
recent years. Photoplethysmography is also used to determine 
blood oxygen saturation, an indicator that is also important in 
determining human health. Mathematical analysis of heart rate 
variability that is extracted from the photoplethysmographic 
signal (also extracted from the electrocardiographic signal) 
can help researchers to evaluate various diseases related to the 
cardiovascular system and even other diseases. such as 

diabetes. On the basis of research on the PPG signal, the 
diagnosis of cardiovascular diseases can be made, the 
development of the heart's activity can be predicted and, on 
this basis, the necessary preventive measures can be taken. 

Early detection of cardiovascular diseases and their 
monitoring in real time can be easily carried out today thanks 
to the latest technological discoveries in the field of sensors, 
which led to their miniaturization and the possibility of correct 
registration of the studied biomedical data. 

Heart rate is a non-stationary quantity. For this reason, a 
suitable non-invasive method for its investigation is heart rate 
variability (HRV) [1,2], which takes into account the 
variations between adjacent heartbeats. The study of HRV 
makes it possible to detect heart diseases in time and to treat 
them appropriately. In their work [3], the authors reported 
increased sympathetic activity and/or decreased 
parasympathetic activity in patients with acute myocardial 
infarction. It can be concluded that heart attack patients have 
reduced heart rate variability, which is associated with an 
increased risk of adverse cardiac events and even death. 

There is evidence in the scientific literature for multiple 
benefits of regular exercise when recommended as adjunctive 
therapy in patients with cardiovascular disease. Regular 
physical exercise can have the role of a therapeutic tool to 
improve the regulation of the autonomic nervous system in 
patients with myocardial infarction and other heart diseases. 
Studies have been conducted on healthy adults [4], in which 
the parameters of variability during intense sports loads have 
been investigated [5-8] and relationships between the general 
condition of people and symptoms of overload have been 
established. 

However, it should be noted that there are conflicting 
results between individual scientific studies in this area. HRV 
in the field of sports medicine requires careful application and 
consideration of the specific characteristics of the recording 
device, pre-processing, analysis and careful interpretation [9]. 
The authors of [10-12] found that the indicators of variability 
are more inaccurate when conducting breathing exercises. 

The purpose of this article is to present an analysis of 
Heart rate variability data, based on signals registered by the 
photoplethysmographic method. 

II. PPG PRE-PROCESSING 
Preprocessing of the photoplethysmographic signals is the 

first step that begins with the processing of the cardio signals. 
It aims to improve the quality of the data and make it suitable 



for the mathematical analysis that follows. All HRV 
estimation technologies are affected by noise and artifacts, so 
removing them from the data is mandatory. Noise is 
introduced by body movement in side noises. It is also 
necessary to detrend the baseline, interpolate the time series, 
and only then proceed to calculate the specific measures of 
variability in the time, frequency, and nonlinear domains. 

The main steps in the preprocessing of 
photoplethysmographic signals usually include the following 
procedures: 

1. Noise reduction 

Photoplethysmographic signals contain various types of 
noise [13-15], such as artifacts derived from human 
movement, electromagnetic interference, or ambient 
noise. Filtering is usually done at this stage, and various 
noise reduction filters can be used: 

• Bandpass filter: Helps remove high-frequency noise 
as well as low-frequency components. 

• Low-pass filter: Removes high-frequency noise 
caused, for example, by electromagnetic interference. 

• High-pass filter: Removes low-frequency fluctuations 
such as those caused by human breathing or body 
movement (or some parts of it, for example moving 
the hands). 

• Notch filter: Can be used to remove specific 
frequencies, for example the power supply frequency. 

2. Baseline correction 

Due to movement or other factors, the 
photoplethysmographic signal can be distorted and have 
variations in the baseline level (the so-called "drift"). For this, 
a baseline correction is applied, which stabilizes the signal and 
returns it to its normal state, which will allow correct analyzes. 

3. Remove motion artifacts 

Motion artifacts represent one of the biggest challenges in 
measuring photoplethysmographic signals, especially when 
using mobile devices to record them. Artifact removal 
approaches include: 

• Filtering of frequencies related to motion (most often 
low-frequency oscillations). 

• Adaptive filters, which are used to dynamically correct 
the signal based on output data from accelerometers (when 
available). 

4. Signal normalization. 

III. HEART RATE VARIABILITY ANALYSIS 
HRV can be analyzed using different methods (linear 

methods - in time domain, frequency domain, time-frequency 
domain and non-linear methods, which can be very different, 
there is no standard accepted for them and they continue to 
develop to this day). 

Types of analysis, depending on the methods used: 

1. Time domain analysis 

Time-domain methods quantify heart rate variability by 
calculating the statistical variation of R-R intervals (that is, the 
times from one heartbeat to the next) over a period of time. 

Basic linear parameters in the time domain [16]: 

SDNN (Standard Deviation of normal (NN) Intervals): 
Measures overall heart rate variability; 

SDANN (Standard Deviation of the Average NN 
intervals): Reflects long-term autonomic regulation of heart 
rate, primarily related to slower trends like circadian rhythms 
or changes due to factors such as physical activity and sleep 
cycles; 

RMSSD (Root Mean Squared Sequential Differences): 
Reflects short-term heart rate variability and is usually 
associated with parasympathetic activity: 

SD ind breaks the long recording into smaller segments 
(usually 5-minute segments) and computes the standard 
deviation of NN intervals for each segment. The SD ind is the 
average of these standard deviations from all segments. 

Time-domain analysis is standardized and often applied, 
especially in long-term HRV monitoring. 

2. Frequency domain analysis 

Frequency domain methods [17,18] analyze HRV by 
separating the signal into different frequency components 
using Fourier or wavelet transforms. These methods provide 
insight into how the autonomic nervous system modulates 
heart rate at different frequencies. 

Heart rate variability is examined in the following 
frequency bands: 

- Ultra-low frequency (ULF): < 0.003 Hz, often 
associated with circadian rhythms. 

ULF reflects very long-term fluctuations, including 
circadian rhythms and thermoregulation. It requires 
long recordings (typically 24 hours) to be reliably 
assessed. 

- Very Low Frequency (VLF): 0.003–0.04 Hz, 
associated with thermoregulation and hormonal 
fluctuations. 

VLF represents longer-term regulatory processes, 
including influences from the renin-angiotensin 
system, thermoregulation, and other mechanisms that 
are not purely autonomic. 

- Low frequency (LF): 0.04–0.15 Hz, influenced by 
both sympathetic and parasympathetic activity, with a 
slight dominance of sympathetic tone. 

LF is often associated with both sympathetic and 
parasympathetic activity, although it is more 
frequently linked with sympathetic modulation, 
especially during periods of stress or physical 
exertion. 

- High Frequency (HF): 0.15–0.40 Hz, closely related 
to parasympathetic (vagal) activity and respiratory 
cycles. 

HF primarily reflects parasympathetic (vagal) 
activity, associated with respiratory sinus arrhythmia 
(the natural increase in heart rate during inhalation 
and decrease during exhalation). It is strongly 
influenced by breathing patterns. 



The LF/HF ratio is often used as a measure of the balance 
between sympathetic and parasympathetic influences on heart 
rate. 

3. Non-linear analysis 

Nonlinear methods [19,20] provide more detailed insight 
into the complex behavior of the heart rate signal that cannot 
be captured by time and frequency domain methods. 

Poincaré plot: A dot plot of R-R intervals (each interval 
plotted against the next) that visually represents HRV. The 
shape of the graph can indicate the balance between 
sympathetic and parasympathetic activity. 

A dot plot of R-R intervals (each interval plotted against 
the next) that visually represents HRV. The shape of the graph 
can indicate the balance between sympathetic and 
parasympathetic activity. 

A Poincaré plot [21,22] is essentially a scatterplot of 
successive R-wave intervals (R-R intervals) in an 
electrocardiogram (ECG). In the case of 
photoplethysmographic signals, it gives an estimate of 
successive P peaks (P-P intervals) 

In the Poincaré diagram of each P-P interval, the following 
is represented: 

On the x-axis: NN(i) – the current interval between two 
consecutive heartbeats. 

On the y-axis: NN(i+1) – the next interval. 

This diagram usually has an oval shape where the points 
are located around the diagonal line NN(i) = NN(i+1). 

Main studied parameters: 

SD1 (Standard Deviation 1): Short-term volatility that is 
perpendicular to the line of identity in the Poincaré diagram. 
This is the standard deviation of the scatter of points 
perpendicular to the line of identity (the diagonal). SD1 
provides information on short-term variability, which is 
primarily the result of respiratory sinus arrhythmia and is 
directly related to parasympathetic (vagal) tone. SD1 is 
calculated as the standard deviation of the distances of points 
from the line of identity (a diagonal line where consecutive 
NN intervals are equal). Deviations from this line reflect 
variations in heart rate. 

SD2 (Standard Deviation 2): Long-term volatility that is 
along the line of identity. This is the standard deviation of the 
scatter of points parallel to the line of identity. SD2 reflects 
the long-term fluctuations in heart rate associated with 
sympathetic and parasympathetic activity. SD2 is calculated 
as the standard deviation along the line parallel to the line of 
identity. This reflects long-term fluctuations in heart rate. 

SD1/SD2 ratio:  Gives additional information about the 
balance between short-term and long-term heart rate 
variability. 

SD1 describes the short-term heart rate variability and is 
primarily related to parasympathetic (vagal) activity. A higher 
SD1 value indicates greater short-term variability, meaning a 
greater influence of parasympathetic tone. 

SD2 describes long-term heart rate variability and reflects 
the balance between the sympathetic and parasympathetic 
nervous systems. SD2 is more related to the long-term 

components of the heart rate and indicates the overall level of 
variability. 

High SD1/SD2 ratio: Indicates high short-term variability 
(increased parasympathetic activity), which is a sign of good 
health and rapid heart rate adaptation. 

Low SD1/SD2 ratio: Indicates reduced short-term 
variability (relatively increased sympathetic activity or 
weaker parasympathetic control), an indicator of stress, 
fatigue, or other autonomic nervous system problems. 

IV. RESULTS 
This article presents the results of a study of 20 healthy 

subjects (mean age 42 years) and 24 subjects with heart 
disease (mean age 44 years). Half the subjects in the groups 
were male. 

A. Time domain 
Of the parameters in the time domain, the following 

parameters were investigated: SDNN[ms], SDАNN[ms], 
RMSSD[ms] and SD ind[ms].  

The obtained time domain results for both data types are 
shown in Table I.  

TABLE I.  TIME DOMAIN  

Parameter Healthy  Unhealthy P value 

SDNN[ms] 165.48±74.09 111.35±67.07 <0.05 
(0.0149) 

SDANN[ms] 142.74±68.96 102.42±43.11 <0.05 
(0.0237) 

RMSSD[ms] 26.32±12.65 18.02±5.18 <0.005 
(0.0048) 

SD ind[ms] 94.36±51.61 66.23±41.92 <0.05 
(0.0499) 

T test is used for statistical analysis. 
The P value<0.05 was considered as significant 

 

The parameters SDNN, SDANN, RMSSD, and SD ind 
were significantly lower (P value<0.05) in the records of the 
diseased subjects compared to the corresponding values in the 
healthy subjects. 

B. Frequency domain 
The obtained Frequency domain results for both data types 

are shown in Table II. 

TABLE II.  FREQUENCY METHOD 

Parameter Healthy  Unhealthy P value 

VLF Power 
[ms2] 2823.38 ± 651.97 3055.62±83

1.03 0.3159 

LF Power [ms2] 1246.58±371.08 469.78±222
.06 <0.0001 

HF Power [ms2] 759.03 ±344.37 383.04±136
.88 <0.0001 

LF Power nu 0.62±0.22 0.55±0.14 0.2076 

HF Power nu 0.38±0.1 0.45±0.12 <0.05 
(0.0441) 

LF/HF 1.64±0.4 1.22±0.36 <0.005 
(0.0007) 

T test is used for statistical analysis. 
The P value<0.05 was considered as significant 

 



The obtained values for LF and HF were statistically 
significant. The determined values for LFnu were not 
statistically significant. The LF/HF ratio for healthy 
individuals is within the range (1.5-2.0), this is normal values 
for HRV. In unhealthy records, this ratio has values less than 
1.5 and indicates the presence of disease and lower vital 
energy.  

C. Poincarè Method 
The obtained results are presented in Table III.  

The results show statistically significant differences in two of 
the studied parameters (SD1 and SD2): therefore, there is a 
difference in the regulation of the heart. The short-term heart 
rate variability (measured by SD1) of healthy people (33.92 
ms) was about twice the variability of non-healthy people 
(16.34 ms). High SD1 values in healthy people indicate good 
short-term HRV and a well working autonomic nervous 
system. 
The long-term variability (measured by SD2) of healthy 
people (117.36 ms) was 2.25 times higher than the variability 
of unhealthy people (16.34 ms).   High SD2 values in healthy 
individuals indicate stable long-term HRV and good heart 
rate adaptability. 
The two parameters studied showed a significant decrease (P 
value <0.0001) in short-term and long-term HRV in heart 
disease patients. 
No significant differences were noted in the SD1/SD2 ratio 
for the two types of recordings studied (P value>0.05). 

TABLE III.  POINCARÈ METHOD  
 

Paramet
er Healthy  Unhealthy  P value 

SD1[ms] 33.92±12.1 16.34±8.2 <0.0001 

SD2[ms] 117.36±42.13 52.11±21.36 <0.0001 

SD1/SD2 0.29±0.06 0.31±0.08 0.3618 
Values are expressed as mean ± standard deviation or in percent (%). 

T test is used for statistical analysis. 
The P value<0.05 was considered as significant 

  

V. DISCUSSIONS 
PPG provides a convenient, painless and easy-to-use 

method for monitoring cardiac function, especially in 
conditions of movement or when using wearable technology. 
Although ECG remains the standard for heart disease 
diagnosis, PPG offers significant advantages for routine 
health monitoring and follow-up of health: 
• Immediacy and convenience: PPG devices are easier 

to use and do not require complex electrodes. They 
can be integrated into wearable devices such as 
smartwatches and fitness trackers, making them 
convenient for everyday wear. 

• Painless measurement: PPG does not require the 
application of electrodes or connection with cables, 
making it a painless and more pleasant method for the 
patient. 

• Better mobility: PPG devices can be used on the go 
and in different environments. 

• Easy integration with wearable technology: PPG is 
easily integrated into wearable devices, allowing 

continuous monitoring of heart rate and HRV during 
physical activity or in daily life. 

• Peripheral Circulation Monitoring: PPG can provide 
information not only on heart rate, but also on oxygen 
saturation and peripheral circulation, which is useful 
for assessing the patient's general condition. 

• Lower costs: PPG technology is usually less 
expensive than ECG equipment, which can be 
expensive and require specialized training to operate. 

• Without special preparation:Unlike ECG, which may 
require certain conditions (eg rest before the test), 
PPG does not require special preparation and can be 
used at any time. 

VI. CONCLUSION 
Photoplethysmography is a non-invasive and inexpensive 

optical measurement technique applied to the surface of the 
skin. The main applications of photoplethyosmography are 
pulse oximetry and heart rate determination, from which 
heart rate variability is derived. In the near future, it is 
expected to expand the applications of PPG sensors for 
human health research with both preventive and prognostic 
purposes. When processing the PPG signal, valuable health-
related information is obtained, information about the human 
cardiovascular system. PPG is a promising technology in 
both healthcare and everyday life, with its ability to determine 
parameters such as stress level and blood oxygen level. 
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