
2024 International Conference “ROBOTICS & MEHATRONICS”

29 – 30 October, 2024, Sofia, Bulgaria

ACKNOWLEDGE THE FINANCIAL SUPPORT OF THE PROJECT WITH ADMINISTRATIVE CONTRACT № KP-06-H57/8 FROM 16.11.2021.

- FUNDED BY THE "COMPETITION FOR FUNDING BASIC RESEARCH - 2021." FROM THE RESEARCH SCIENCES FUND, BULGARIA.

Design based-research for streamlining the

integration of text-generative AI into socially-

assistive robots

Anna Lekova1, Detelina Vitanova2
1Institute of Robotics

Bulgarian Academy of Sciences, Acad.
Georgi Bonchev str., 1113 Sofia

a.lekova@ir.bas.bg
2 Computer Science Department,

ULSIT, 119 Tsarigradsko Shose blvd.,
Sofia, Bulgaria

d.vitanova@unibit.bg

ABSTRACT: Integrating text-generative AI through

generative pre-trained transformers (GPTs) into socially-assistive

robots (SARs) could significantly enhance their ability to perform

natural language processing (NLP) tasks. Well-known

implementations of GPTs are OpenAI ChatGPT, Google Gemini,

MS Azure AI services, BgGPT. A universal approach for

streamlining this integration would allow people without technical

expertise to enhance conversations with their robots. This is

particularly relevant, given that INSAIT has developed BgGPT,

the first free and open Bulgarian-specific language model,

designed for Bulgarian users, institutions and businesses.

Improving the efficiency of voice-based and text-based queries to

robots is essential for enhancing front-end services, as it facilitates

more natural interactions with users. On the back-end, text

generation plays a key role in interpreting and responding to these

queries. Therefore, the study explores design-based research

focused on streamlining the integration of BgGPT endpoints into

various SARs, with a specific focus on evaluating response times.

The main concept involves developing an Express-based web

server as the backend infrastructure that facilitates access to GPTs

and SARs local modules using standard TCP and HTTP protocols.

In the front end, the server's GET and POST endpoints are

accessed using Blockly, simplifying application design by offering

a visual programming environment that allows users to customize

conversation flows without any programming skills. The

conclusions regarding the rationale are drawn from the

implementation of the proposed integration for three different

text-generative AI models and two SARs—NAO and Furhat.

Keywords: Socially-assistive robots, Conversational Artificial

Intelligence, text-generative AI models, visual programing, APIs.

I. INTRODUCTION

As Artificial Intelligence (AI) advances, AI-powered
physical robots have become new tools for improving human
well-being in everyday life. Recently, the integration of text-
generative AI through Generative Pre-trained Transformers
(GPTs) into Socially-Assistive Robots (SARs) has introduced
new possibilities for enhancing human-robot interactions.
However, this integration requires programming skills and
technical knowledge, particularly in areas like text-to-speech
services, speech recognition, text generation, user-robot
interfaces and the robot's sensor and actuator subsystems. In
this context, there is currently no user-friendly approach how

to integrate cloud text-generative AI models, such as OpenAI
ChatGPT, Google Gemini and MS Azure AI services, into
SARs. On the back-end, text generation plays a key role in
interpreting and responding to queries. On the other hand,
streamlining voice-based and text-based queries to robots is
important for enhancing front-end services, allowing for more
natural interface user-robot.

Human-like interactions with robots using Conversational
Artificial Intelligence (ConvAI) enable natural
communication in various contexts, enhanced by the robot's
physical presence and hardware sensors. ConvAI combines
Natural Language Processing (NLP) with machine or deep
learning and although ConvAI can be virtual, the diverse
sensory systems and motion control of the robots can provide
context for the surrounding environment. ConvAI, integrated
into robots, should actively generate responses by analyzing
user utterances and conversation context, enhanced by chat
GPT model capabilities. Studies on human-robot interaction
increasingly focus on integrating cloud-based services for
automatic speech recognition (ASR) and text generation [1-
7]. Most of these efforts aim to extend conversational dialogue
and convert voice commands into machine-readable code,
creating a more natural and intuitive interface for
communication by integrating chat bots to enhance
responsiveness. However, few address the technological
limitations. Authors in [4] conducted a study on the accuracy
and delay of cloud-based speech recognition systems in
human-robot interaction. Authors’ findings suggest that the
precision and latency of cloud-based ASR are significantly
influenced by the network connection's quality and the
computational capabilities of the cloud server and can vary
from a few hundred milliseconds to several seconds. These
results highlight that, while cloud-based technologies offer
great promise for improving human-robot interactions, they
also present certain technical challenges, particularly with
latency and real-time processing. In summary, technical
expertise is required to improve AI-driven conversations with
robots, emphasizing the need for a more universal approach to
streamline the integration of text generation by GPTs in SARs.
Optimizing voice and text queries, along with back-end NLP
services, is essential for enhancing user interactions and
overall system efficiency.

The study explores Design-Based Research (DBR)
focused on streamlining the integration of text-generative
APIs into various SARs. The previous iterations in this DBR
are summarized in [8]. The innovation in the current iteration
and build-test cycles of a software architecture for integrating
convAI in SARs, lies in the integration of Bulgarian cloud
services for NLP into NAO and Furhat robots’ native
software. INSAIT has developed BgGPT, the first free and
open Bulgarian-specific language model, designed for
Bulgarian users, institutions and businesses. Additionally, the
architecture has been optimized to address technical
challenges, identified in previous iterations, especially
regarding response time issues with cloud services for NLU
accessed from the Node-RED platform [9]. This study
successfully coped with these challenges through solutions
implemented using a web server developed by Express.js [10]
and the integration of Blockly [11], thus enhancing response
times and streamlining programming process.

The contribution of the proposed study is a design-based
research how to streamline the integration of text- generative
AI, such as OpenAI ChatGPT, NLPcloud GPT and BgGPT
endpoints into two SARs - NAO and Furhat, and to evaluate
the latency of GPT APIs response. The main concept involves
creating an Express-based server that provides seamless
access to different SARs through standard TCP and HTTP
protocols. In the front end, the server's GET and POST
endpoints are accessed using Blockly, simplifying application
design by offering a visual programming environment that
allows users to customize conversation flows with minimal
programming skills. The conclusions regarding the rationale
are drawn from the implementation of the proposed
integration, which involved an analysis of its effectiveness in
real-world scenarios.

II. SOME SPECIFICS OF THE INTEGRATION OF

TEXT-GENERATIVE GPT MODELS INTO SARS

Design-based research in the integration of text-driven

GPT models into SARs focuses on iterative development and

testing within real-world SARs settings. The modular

architecture proposed in Fig. 1 offers middleware solutions to

simplify the integration of various NLP services, such as

ASR, TTS, question/answer and text generation, into the

native software of robots that may have different capabilities

and varying levels of embedded AI components. Narration

can take place through voice, QR code or text. Different

SARs manage voice interactions and QR code scanning,

while question/answer is facilitated through Blockly blocks

that interface with the Express server frontend (Fig.2).

A. NLP capabilities of SARs

While the Furhat robot [12], known as one of the most

advanced conversational robots, possesses many AI

capabilities, the humanoid robot NAO [13] offers engaging

animations but has limited speech recognition and dialogue

options based on a predefined lexicon, resulting in a restricted

vocabulary and a limited number of dialog scenarios.

Integrating ConvAI into NAO can significantly enhance its

capabilities, particularly for intensive speech and listening

exercises for individuals with language difficulties.

Fig 1. Modular architecture for integration of various text-driven GPT models
into SARs

B. Designing local endpoints to cloud-based chat GPT

APIs

We adopted a universal approach to implement a RESTful

API server, like an Express-based server, to streamline the

proposed integration. This solution would enable developers

to easily switch between or combine various NLP models,

while providing uniform access for speech recognition, text-

to-speech and text generation without requiring wide

programming skills.

An Express-based server refers to a web server built using

Express.js, a lightweight and flexible web application

framework for Node.js. Express server simplifies the process

of building APIs by providing a set of tools and features for

handling HTTP requests, routing, middleware integration,

etc. It offers minimal core functionality, designed to be

extended using the flexibility of Node.js. The developed

server for integrating ChatGPT models into robots, has

various types of endpoints that use child processes either for

handling the robots’ remote API sessions, or external APIs to

cloud-based NLP models in order to enhance the interactions

with robots. Figure 1 illustrates different types of endpoints

with child processes. The first box on the left shows

endpoints for executing Python 2.7 script in Node.js using the

built-in child_process module. To use different Python

interpreters, a virtual environment (venv) endpoint was

developed, which executes shell commands to start the venv

activation/deactivation scripts. This allows for flexible

management of project-specific dependencies and interpreter

versions. Similar endpoints are presented for running, exec

commands for: java -jar, SSH connection, PSCP, the PuTTY

secure copy client for transferring files, etc.

Details on how access to OpenAI ChatGPT and NLP

cloud services is established as a child process in JavaScript

can be found in [8]. Similarly, the newly designed access to

BgGPT was implemented. Using child processes provides

some benefits in performance, maintainability, and

modularity, since it isolates the API logic from the main

application, resulting in Express server code focused on

HTTP requests. Child processes enable non-blocking

execution, allowing the server to handle multiple requests

simultaneously without delays. Additionally, they facilitate

the use of Python scripts without rewriting them in Node.js,

ensuring compatibility with other endpoints.

Local endpoints were established for accessing the

internal repository for data posting and retrieval, integrating

services through the use of `const repository = {};` , which

initializes an empty object that stores key-value pairs in json

format.

C. Integration of Blockly with Express server

While Express runs backend commands, the Express

server is accessed through the Blockly blocks interface on the

front-end. When the user interacts with the blocks for NAO

in Blockly (Fig.2), this triggers an API request to the server,

which then runs a Node.js script (utilizing a child process for

the Python NAOqi session) to control the NAO robot. This

setup enables streamlining the integration between the visual

programming environment and the server's backend

operations. Through the NAO blocks, users can perform

actions such as reading QR codes, uploading audio files to the

NAO's internal memory, playing MP3 files on a robot,

creating animations on a robot, and more.

Fig. 2. Interface the Express server using Blockly blocks

III. IMPLEMENTATION AND EVALUATION OF THE

PROPOSED INTEGRATION

A. Streamlining the integration of BgGPT endpoints into

NAO and Furhat robots

The proposed implementation of the integration of

BgGPT endpoints into NAO and Furhat robots illustrates that

this can be done without significant programming skills. Data

processing, storage and online display were conducted on a

laptop (11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

2.80 GHz, 8.00 GB RAM, MS Windows 11 Prof. 64-bit).

The Express server operates locally, with requests

handled through the endpoint accessible via the URL:

`http://localhost:3000/bgGPT?question=<text>&context=<

text>`. In this format, the `<text>` placeholders are replaced

with the actual `question` and `context` values provided by

the user in the query string. When a request is made to this

endpoint, the server triggers the `exec` command, which

spawns a child process. Since INSAIT didn't have a client for

using BgGPT at the time of this study, we utilized the

JavaScript Axios library in a similar manner. The pseudocode

how to access BgGPT APIs by JavaScript child process is

shown in Fig. 3, where the `question` and `context`

parameters are passed as command-line arguments. The

output and any errors from the script are managed within this

process. Figure 3 also illustrates the execution and retrieval

of outputs from child processes, cloud services and shell

commands in Node.js. NAO Event Listener is used to get the

data output from the Python script, logged in stdout.on('data').

Accordingly, the output of the command (stored in `stdout`)

is then sent to the server using the ‘fetch API’ and saved as a

key-value pair in the internal repository accessible at

`http://localhost:3000/repository`. The data is sent in JSON

format with the following structure:

- key: 'answer', representing the name of the output value.

- value: `stdout`, which contains the command's output.

Fig. 3 Pseudocode for the flow and logic how to access BgGPT APIs

B. Evaluating the response times of BgGPT endpoints

To set-up logging in an Express server to capture

incoming requests, request parameters and response details,

we utilized a logging middleware - Morgan for Node.js. We

logged and monitored the request durations within Express,

which records details of HTTP requests and aids in

debugging and monitoring server activity. The `'dev'` format

provides a concise, color-coded log showing the request

method, URL, status code, response time, and response size.

In the example console output, we can observe two logged

HTTP requests:

1. Import necessary libraries (axios for HTTP requests).

2. Parse command line arguments and initialize variables:

 - Extract `question` and `context` from command line

arguments.

 - Store the API key.

3. Define the request payload:
 -Model: "INSAIT-Institute/bggpt-stage3-RFLC-Bigbalance-

Duolingual-v2"

 - Prompt: "<s>[INST] {question} [/INST] {context}</s> [INST]

{question} [/INST]"

 - Set max tokens (1024).

 - Set temperature to 0.1 (controls randomness).

 - Set top_k to 20 (limits how many words are considered).

 - Set repetition penalty to 1.1 (prevents repeated text).

 - Set stop condition to "</s>".

 - Stream is set to false.

4. Send a POST request to the BgGPT API:

 - Use axios to send the request to

'https://api.bggpt.ai/completions'.

 - Attach the request payload with headers

 (data, { 'apikey': apiKey, 'accept': 'application/json',

 'content-type': 'application/json'}).

5. If the request is successful:
 - Extract and log the response data:

 response =>

 - Specifically, log the generated text result:

 text = response.data.choices[0].text;

6. If the request fails:

 - Log the error message or error details.

Server is successfully running, ATlog is listening on port 3000

`POST /repository 200 7.881 ms - 48`
`GET /venv 404 14.271 ms - 143`

 `GET /QA?question= Котките и мишките (and so on) 882 tokens

 200 3898.670 ms - 882

The first line indicates that a POST request to

`/repository` was successful with a status code of 200,

responding in just 7.881 milliseconds (ms) and sending 48

bytes of data. The second line shows a GET request to ̀ /venv`

that returned a 404 status (resource not found) in 14.271 ms,

with a response size of 143 bytes. These logs show that the

connection from Blockly to API server is fast, handling

requests efficiently even in error cases like the 404 response.

The third line displays a GET request to NLPCloudClient

with the parameters `question='обичат ли се котка и

мишка?'` and `context='обясни по детски'`. These values

are sourced from

`Blockly.JavaScript.quote_(block.getFieldValue('QUESTIO

N') and ‘CONTEXT’)`. The status code of 200 indicates a

successful response, along with the response time in

milliseconds and the number of received tokens.

Summarizing, the connection time between Blockly and

the Express server, is minimal and can be neglected.

Unfortunately, the API responses from the cloud are

frequently slow, often exceeding the acceptable threshold of

one second. Three Wi-Fi network configurations were

analyzed (all with Protocol: Wi-Fi 4 (802.11n); Network

band 2.4 GHz and Link speed (Receive/Transmit): (1) less

than 90/90 Mbps, (2)135/135 Mbps, (3) 5G 150/150 Mbps).

The delays coming from the cloud-based BgGPT API

responses are illustrated in Figures 4-7. The graph in Figure

4 shows the relationship between the API response time (in

seconds) and the number of tokens received. The plot

illustrates that, as the number of completion tokens increases,

the response time generally increases as well. The trend is

nearly linear.

We also tested whether some variations caused by factors

such as network bandwidth, server load and latency within

the cloud infrastructure could result in differing levels of

delay. We analyzed whether a network congestion during

peak usage times could result in slower response times, i.e.

during cloud resources manage a higher volume of requests.

We varied also the type of the request content: question

explanation (e.g. “Tell in a childish way about the planet

Saturn”) and fairy tale generation (e.g. “Tell me a fairy tale

about: a cat on a tree”). From Figures 5 and 6, we can

conclude that the relationship between received tokens and

response time is not significantly affected by the type of

query content, however it slightly depends on network

congestion. Low link speeds result in delays of about 1 to 2

seconds, although this is not always the case when fewer

tokens are received.

Fig. 4 Relationship between the API response time (in seconds) and the
number of tokens received

Fig. 5 Relationship between the API response time (in seconds) and the
number of tokens received according to the network congestion for question
explanation

Fig. 6 Relationship between the API response time (in seconds) and the
number of tokens received according to the network congestion for fairy tale
generation

Fig. 7 Relationship between the API response time (in seconds) and the server
congestion

C. Discussion

Knowing the fast response of web-based chat BgGPT, our

results show latency in response times when accessing chat

BgGPT APIs. We can explain this by several factors, the

primary one being that when using APIs, requests and

responses must traverse the internet, which can lead to delays.

In difference, web-based chat GPT is optimized to reduce this

latency, particularly if it is hosted on servers with some

optimizations for the user. Additionally, API requests often

incur overhead for authentication, data formatting, and other

protocol-specific requirements, further increasing response

times. The server load handling API requests can also vary,

leading to slower response times during peak usage periods,

although we didn’t observe this (Fig. 7).

The results presented in Figures 4 to 6 align with the

findings of Patil and Gudivada [14], which discusses the

linear relationship between Large Language Models (LLMs)

latency and output token count. A detailed analysis

explaining the linear relationship between LLM latency and

the number of output tokens, outlining a formula for total

response time that includes a constant factor plus a term

proportional to the output token count, can be seen in papers

[15] and [16].

In the future, to improve response time and minimize

latency, we plan to test the INSAIT-Institute/BgGPT-7B-

Instruct-v0.2 model by running it locally after downloading

and installing it on a local server. Currently, the available

model on Hugging Face is "mistralai/Mistral-7B-v0.1" and

can be accessed at https://huggingface.co/mistralai/Mistral-

7B-v0.1. However, we expect new challenges related to

limited or expensive computational resources.

IV. CONCLUSIONS

The study proposed design-based research aimed at

optimizing the integration of text-generative GPT models,

particularly BgGPT, into various SARs with minimal

programming skills. The main concept involves developing

an Express-based web server as the backend infrastructure,

which enables access to GPTs APIs and local modules of

SARs through standard TCP and HTTP protocols. On the

front end, users can access the server GET and POST

endpoints via Blockly blocks, providing a visual

programming environment that simplifies application design

and allows for customization of conversation flows. After

evaluating the response times, it was determined that the

delays are not attributable to network or cloud server

congestion. Factors such as network speed, specific days of

the week, times of day and the types of request content were

considered, however the latency primarily arise from using

APIs. The slow responses come from the overhead for

authentication, data formatting, and other protocol-specific

requirements. Further research is planned to enhance the

response times.

ACKNOLEDGEMENTS

The research findings were supported by the National

Scientific Research Fund, Project № KP-06-H67/1. We

express our gratitude to Emiliyan Pavlov from INSAIT, for

assisting us in obtaining the API key and facilitating the use

of the BgGPT APIs.

REFERENCES

[1]. T. Belpaeme, J. Kennedy, A. Ramachandran, B.

Scassellati, and F. Tanaka, “Social robots for education:

A review,” Science Robotics, vol. 3, no. 21, p. eaat5954,

Aug. 2018, DOI:

https://doi.org/10.1126/scirobotics.aat5954.

[2]. O. Elfaki et al., “Revolutionizing social robotics: A

cloud-based framework for enhancing the intelligence

and autonomy of social robots,” Robotics, vol. 12, no. 2,

p. 48, Apr. 2023, DOI:

https://doi.org/10.3390/robotics12020048.

[3]. F. Kaptein et al., “A cloud-based robot system for long-

term interaction: Principles, implementation, lessons

learned,” ACM Transactions on Human-Robot

Interaction, vol. 11, no. 1, pp. 1–27, Mar. 2022, DOI:

https://doi.org/10.1145/3481585.

[4]. M. Deuerlein, Langer, J. Seßner, P. Heß, and J. Franke,

“Human-robot-interaction using cloud-based speech

recognition systems,” Procedia CIRP, vol. 97, pp. 130–

135, 2021, DOI:

https://doi.org/10.1016/j.procir.2020.05.214.

[5]. L. Grassi, C.T. Recchiuto, and A. Sgorbissa,

“Sustainable cloud services for verbal interaction with

embodied agents,” Intelligent Service Robotics, vol. 16,

pp. 599–618, 2023, DOI:

https://doi.org/10.1007/s11370-023-00485-3.

[6]. S. Kaszuba, J. Caposiena, S.R. Sabella, F. Leotta, and D.

Nardi, “Empowering collaboration: A pipeline for

human-robot spoken interaction in collaborative

scenarios,” in: A.A. Ali et al., Social Robotics. ICSR

2023, Lecture Notes in Computer Science, vol. 14454,

Springer, Singapore, 2024, DOI:

https://doi.org/10.1007/978-981-99-8718-4_9.

[7]. Y. Lai et al., “Intuitive multi-modal human-robot

interaction via posture and voice,” in: J. Filipe, J. Röning

(eds), Robotics, Computer Vision and Intelligent

Systems. ROBOVIS 2024, Communications in

Computer and Information Science, vol. 2077, Springer,

Cham, 2024, DOI: https://doi.org/10.1007/978-3-031-

59057-3_28.

[8]. A. Lekova, P. Tsvetkova, A. Andreeva, M. Simonska,

and A. Kremenska, “System software architecture for

advancing human-robot interaction by cloud services

and multi-robot cooperation,” International Journal on

Information Technologies and Security, vol. 16, no. 1,

pp. 65–76, 2024, DOI:

https://doi.org/10.59035/fmfz4017.

[9]. Node-RED. Online: Retrieved October, 2024 from

https://nodered.org/

[10]. ExpressJS. Online: Retrieved October, 2024 from

https://expressjs.com/

[11]. Google Developers, Blockly. Online: Retrieved

October, 2024 from

https://developers.google.com/blockly

[12]. Furhat Robotics. Online: Retrieved October, 2024

from https://furhatrobotics.com/

[13]. Aldebaran Robotics, NAO. Online: Retrieved

October, 2024 from https://www.aldebaran.com/en/nao

[14]. R. Patil and V. Gudivada, “A review of current

trends, techniques, and challenges in large language

models (LLMs),” Applied Sciences, vol. 14, no. 5, p.

2074, 2024, DOI: https://doi.org/10.3390/app14052074.

[15]. arXiv:2407.05347, arXiv preprint

arXiv:2407.05347, 2024, DOI:

https://doi.org/10.48550/arXiv.2407.05347.

[16]. arXiv:2410.10819v1, arXiv preprint

arXiv:2410.10819, 2024, DOI:

https://doi.org/10.48550/arXiv.2410.10819.

https://doi.org/10.1126/scirobotics.aat5954
https://doi.org/10.3390/robotics12020048
https://doi.org/10.1145/3481585
https://doi.org/10.1016/j.procir.2020.05.214
https://doi.org/10.1007/s11370-023-00485-3
https://doi.org/10.1007/978-981-99-8718-4_9
https://doi.org/10.1007/978-3-031-59057-3_28
https://doi.org/10.1007/978-3-031-59057-3_28
https://doi.org/10.59035/fmfz4017
https://doi.org/10.3390/app14052074
https://doi.org/10.48550/arXiv.2407.05347
https://doi.org/10.48550/arXiv.2410.10819

