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ABSTRACT: Integrating text-generative AI through 

generative pre-trained transformers (GPTs) into socially-assistive 

robots (SARs) could significantly enhance their ability to perform 

natural language processing (NLP) tasks. Well-known 

implementations of GPTs are OpenAI ChatGPT, Google Gemini, 

MS Azure AI services, BgGPT. A universal approach for 

streamlining this integration would allow people without technical 

expertise to enhance conversations with their robots. This is 

particularly relevant, given that INSAIT has developed BgGPT, 

the first free and open Bulgarian-specific language model, 

designed for Bulgarian users, institutions and businesses. 

Improving the efficiency of voice-based and text-based queries to 

robots is essential for enhancing front-end services, as it facilitates 

more natural interactions with users. On the back-end, text 

generation plays a key role in interpreting and responding to these 

queries. Therefore, the study explores design-based research 

focused on streamlining the integration of BgGPT endpoints into 

various SARs, with a specific focus on evaluating response times. 

The main concept involves developing an Express-based web 

server as the backend infrastructure that facilitates access to GPTs 

and SARs local modules using standard TCP and HTTP protocols. 

In the front end, the server's GET and POST endpoints are 

accessed using Blockly, simplifying application design by offering 

a visual programming environment that allows users to customize 

conversation flows without any programming skills. The 

conclusions regarding the rationale are drawn from the 

implementation of the proposed integration for three different 

text-generative AI models and two SARs—NAO and Furhat. 

Keywords: Socially-assistive robots, Conversational Artificial 

Intelligence, text-generative AI models, visual programing, APIs. 

I. INTRODUCTION 

As Artificial Intelligence (AI) advances, AI-powered 
physical robots have become new tools for improving human 
well-being in everyday life. Recently, the integration of text-
generative AI through Generative Pre-trained Transformers 
(GPTs) into Socially-Assistive Robots (SARs) has introduced 
new possibilities for enhancing human-robot interactions. 
However, this integration requires programming skills and 
technical knowledge, particularly in areas like text-to-speech 
services, speech recognition, text generation, user-robot 
interfaces and the robot's sensor and actuator subsystems. In 
this context, there is currently no user-friendly approach how 

to integrate cloud text-generative AI models, such as OpenAI 
ChatGPT, Google Gemini and MS Azure AI services, into 
SARs. On the back-end, text generation plays a key role in 
interpreting and responding to queries. On the other hand, 
streamlining voice-based and text-based queries to robots is 
important for enhancing front-end services, allowing for more 
natural interface user-robot. 

Human-like interactions with robots using Conversational 
Artificial Intelligence (ConvAI) enable natural 
communication in various contexts, enhanced by the robot's 
physical presence and hardware sensors. ConvAI combines 
Natural Language Processing (NLP) with machine or deep 
learning and although ConvAI can be virtual, the diverse 
sensory systems and motion control of the robots can provide 
context for the surrounding environment. ConvAI, integrated 
into robots, should actively generate responses by analyzing 
user utterances and conversation context, enhanced by chat 
GPT model capabilities. Studies on human-robot interaction 
increasingly focus on integrating cloud-based services for 
automatic speech recognition (ASR) and text generation [1-
7]. Most of these efforts aim to extend conversational dialogue 
and convert voice commands into machine-readable code, 
creating a more natural and intuitive interface for 
communication by integrating chat bots to enhance 
responsiveness. However, few address the technological 
limitations. Authors in [4] conducted a study on the accuracy 
and delay of cloud-based speech recognition systems in 
human-robot interaction. Authors’ findings suggest that the 
precision and latency of cloud-based ASR are significantly 
influenced by the network connection's quality and the 
computational capabilities of the cloud server and can vary 
from a few hundred milliseconds to several seconds. These 
results highlight that, while cloud-based technologies offer 
great promise for improving human-robot interactions, they 
also present certain technical challenges, particularly with 
latency and real-time processing. In summary, technical 
expertise is required to improve AI-driven conversations with 
robots, emphasizing the need for a more universal approach to 
streamline the integration of text generation by GPTs in SARs. 
Optimizing voice and text queries, along with back-end NLP 
services, is essential for enhancing user interactions and 
overall system efficiency. 



The study explores Design-Based Research (DBR) 
focused on streamlining the integration of text-generative 
APIs into various SARs. The previous iterations in this DBR 
are summarized in [8]. The innovation in the current iteration 
and build-test cycles of a software architecture for integrating 
convAI in SARs, lies in the integration of Bulgarian cloud 
services for NLP into NAO and Furhat robots’ native 
software. INSAIT has developed BgGPT, the first free and 
open Bulgarian-specific language model, designed for 
Bulgarian users, institutions and businesses. Additionally, the 
architecture has been optimized to address technical 
challenges, identified in previous iterations, especially 
regarding response time issues with cloud services for NLU 
accessed from the Node-RED platform [9]. This study 
successfully coped with these challenges through solutions 
implemented using a web server developed by Express.js [10] 
and the integration of Blockly [11], thus enhancing response 
times and streamlining programming process.  

The contribution of the proposed study is a design-based 
research how to streamline the integration of text- generative 
AI, such as OpenAI ChatGPT, NLPcloud GPT and BgGPT 
endpoints into two SARs - NAO and Furhat, and to evaluate 
the latency of GPT APIs response. The main concept involves 
creating an Express-based server that provides seamless 
access to different SARs through standard TCP and HTTP 
protocols. In the front end, the server's GET and POST 
endpoints are accessed using Blockly, simplifying application 
design by offering a visual programming environment that 
allows users to customize conversation flows with minimal 
programming skills. The conclusions regarding the rationale 
are drawn from the implementation of the proposed 
integration, which involved an analysis of its effectiveness in 
real-world scenarios. 

II.  SOME SPECIFICS OF THE INTEGRATION OF  

TEXT-GENERATIVE GPT MODELS INTO SARS  

Design-based research in the integration of text-driven 

GPT models into SARs focuses on iterative development and 

testing within real-world SARs settings. The modular 

architecture proposed in Fig. 1 offers middleware solutions to 

simplify the integration of various NLP services, such as 

ASR, TTS, question/answer and text generation, into the 

native software of robots that may have different capabilities 

and varying levels of embedded AI components. Narration 

can take place through voice, QR code or text. Different 

SARs manage voice interactions and QR code scanning, 

while question/answer is facilitated through Blockly blocks 

that interface with the Express server frontend (Fig.2). 

A. NLP capabilities of SARs 

 

While the Furhat robot [12], known as one of the most 

advanced conversational robots, possesses many AI 

capabilities, the humanoid robot NAO [13] offers engaging 

animations but has limited speech recognition and dialogue 

options based on a predefined lexicon, resulting in a restricted 

vocabulary and a limited number of dialog scenarios. 

Integrating ConvAI into NAO can significantly enhance its 

capabilities, particularly for intensive speech and listening 

exercises for individuals with language difficulties. 

 

 
Fig 1. Modular architecture for integration of various text-driven GPT models 
into SARs 

B. Designing local endpoints to cloud-based  chat GPT 

APIs 

We adopted a universal approach to implement a RESTful 

API server, like an Express-based server, to streamline the 

proposed integration. This solution would enable developers 

to easily switch between or combine various NLP models, 

while providing uniform access for speech recognition, text-

to-speech and text generation without requiring wide 

programming skills. 

An Express-based server refers to a web server built using 

Express.js, a lightweight and flexible web application 

framework for Node.js. Express server simplifies the process 

of building APIs by providing a set of tools and features for 

handling HTTP requests, routing, middleware integration, 

etc. It offers minimal core functionality, designed to be 

extended using the flexibility of Node.js. The developed 

server for integrating ChatGPT models into robots, has 

various types of endpoints that use child processes either for 

handling the robots’ remote API sessions, or external APIs to 

cloud-based NLP models in order to enhance the interactions 

with robots. Figure 1 illustrates different types of endpoints 

with child processes. The first box on the left shows 

endpoints for executing Python 2.7 script in Node.js using the 

built-in child_process module. To use different Python 

interpreters, a virtual environment (venv) endpoint was 

developed, which executes shell commands to start the venv 

activation/deactivation scripts. This allows for flexible 

management of project-specific dependencies and interpreter 

versions.   Similar endpoints are presented for running, exec 

commands for: java -jar, SSH connection, PSCP, the PuTTY 

secure copy client for transferring files, etc.  

Details on how access to OpenAI ChatGPT and NLP 

cloud services is established as a child process in JavaScript 

can be found in [8]. Similarly, the newly designed access to 

BgGPT was implemented. Using child processes provides 

some benefits in performance, maintainability, and 

modularity, since it isolates the API logic from the main 

application, resulting in Express server code focused on 

HTTP requests. Child processes enable non-blocking 

execution, allowing the server to handle multiple requests 



simultaneously without delays. Additionally, they facilitate 

the use of Python scripts without rewriting them in Node.js, 

ensuring compatibility with other endpoints. 

Local endpoints were established for accessing the 

internal repository for data posting and retrieval, integrating 

services through the use of `const repository = {};` , which 

initializes an empty object that stores key-value pairs in json 

format. 

 

C. Integration of Blockly with Express server  

While Express runs backend commands, the Express 

server is accessed through the Blockly blocks interface on the 

front-end. When the user interacts with the blocks for NAO 

in Blockly (Fig.2), this triggers an API request to the server, 

which then runs a Node.js script (utilizing a child process for 

the Python NAOqi session) to control the NAO robot. This 

setup enables streamlining the integration between the visual 

programming environment and the server's backend 

operations. Through the NAO blocks, users can perform 

actions such as reading QR codes, uploading audio files to the 

NAO's internal memory, playing MP3 files on a robot, 

creating animations on a robot, and more. 

 

 
Fig. 2. Interface the Express server using Blockly blocks 

III. IMPLEMENTATION AND EVALUATION OF THE 

PROPOSED INTEGRATION 

A. Streamlining the integration of BgGPT endpoints into 

NAO and Furhat robots 

The proposed implementation of the integration of 

BgGPT endpoints into NAO and Furhat robots illustrates that 

this can be done without significant programming skills. Data 

processing, storage and online display were conducted on a 

laptop (11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz   

2.80 GHz, 8.00 GB RAM, MS Windows 11 Prof. 64-bit).  

The Express server operates locally, with requests 

handled through the endpoint accessible via the URL: 

`http://localhost:3000/bgGPT?question=<text>&context=<

text>`. In this format, the `<text>` placeholders are replaced 

with the actual `question` and `context` values provided by 

the user in the query string. When a request is made to this 

endpoint, the server triggers the `exec` command, which 

spawns a child process. Since INSAIT didn't have a client for 

using BgGPT at the time of this study, we utilized the 

JavaScript Axios library in a similar manner. The pseudocode 

how to access BgGPT APIs by JavaScript child process is 

shown in Fig. 3, where the `question` and `context` 

parameters are passed as command-line arguments. The 

output and any errors from the script are managed within this 

process. Figure 3 also illustrates the execution and retrieval 

of outputs from child processes, cloud services and shell 

commands in Node.js. NAO Event Listener is used to get the 

data output from the Python script, logged in stdout.on('data'). 

Accordingly, the output of the command (stored in `stdout`) 

is then sent to the server using the ‘fetch API’ and saved as a 

key-value pair in the internal repository accessible at 

`http://localhost:3000/repository`. The data is sent in JSON 

format with the following structure: 

   

- key: 'answer', representing the name of the output value.   

- value: `stdout`, which contains the command's output.  

 

 
Fig. 3 Pseudocode for the flow and logic how to access BgGPT APIs 

 

B. Evaluating the response times of BgGPT endpoints  

To set-up logging in an Express server to capture 

incoming requests, request parameters and response details, 

we utilized a logging middleware - Morgan for Node.js.  We 

logged and monitored the request durations within Express, 

which records details of HTTP requests and aids in 

debugging and monitoring server activity.  The `'dev'` format 

provides a concise, color-coded log showing the request 

method, URL, status code, response time, and response size. 

In the example console output, we can observe two logged 

HTTP requests: 

 

 

 

 

 

   

1. Import necessary libraries (axios for HTTP requests). 

 

2. Parse command line arguments and initialize variables: 

   - Extract `question` and `context` from command line 

arguments. 

   - Store the API key. 

 

3. Define the request payload: 
   -Model: "INSAIT-Institute/bggpt-stage3-RFLC-Bigbalance-

Duolingual-v2" 

   - Prompt: "<s>[INST] {question} [/INST] {context}</s> [INST] 

{question} [/INST]" 

   - Set max tokens (1024). 

   - Set temperature to 0.1 (controls randomness). 

   - Set top_k to 20 (limits how many words are considered). 

   - Set repetition penalty to 1.1 (prevents repeated text). 

   - Set stop condition to "</s>". 

   - Stream is set to false. 
 

4. Send a POST request to the BgGPT API: 

   - Use axios to send the request to 

'https://api.bggpt.ai/completions'. 

   - Attach the request payload with headers  

    (data, { 'apikey': apiKey,     'accept': 'application/json', 

    'content-type': 'application/json'}). 

 

5. If the request is successful: 
   - Extract and log the response data: 

     response => 

   - Specifically, log the generated text result: 

     text = response.data.choices[0].text; 

 

6. If the request fails: 

   - Log the error message or error details. 

Server is successfully running, ATlog is listening on port 3000 

`POST /repository 200 7.881 ms - 48`  
`GET /venv 404 14.271 ms - 143` 

 `GET /QA?question= Котките и мишките (and so on) 882 tokens  

  200 3898.670 ms - 882 



The first line indicates that a POST request to 

`/repository` was successful with a status code of 200, 

responding in just 7.881 milliseconds (ms) and sending 48 

bytes of data. The second line shows a GET request to ̀ /venv` 

that returned a 404 status (resource not found) in 14.271 ms, 

with a response size of 143 bytes. These logs show that the 

connection from Blockly to API server is fast, handling 

requests efficiently even in error cases like the 404 response. 

The third line displays a GET request to NLPCloudClient 

with the parameters `question='обичат ли се котка и 

мишка?'` and `context='обясни по детски'`. These values 

are sourced from 

`Blockly.JavaScript.quote_(block.getFieldValue('QUESTIO

N') and ‘CONTEXT’)`. The status code of 200 indicates a 

successful response, along with the response time in 

milliseconds and the number of received tokens.             

Summarizing, the connection time between Blockly and 

the Express server, is minimal and can be neglected. 

Unfortunately, the API responses from the cloud are 

frequently slow, often exceeding the acceptable threshold of 

one second. Three Wi-Fi network configurations were 

analyzed (all with Protocol: Wi-Fi 4 (802.11n); Network 

band 2.4 GHz and Link speed (Receive/Transmit): (1) less 

than 90/90 Mbps, (2)135/135 Mbps, (3) 5G 150/150 Mbps).  

The delays coming from the cloud-based BgGPT API 

responses are illustrated in Figures 4-7. The graph in Figure 

4 shows the relationship between the API response time (in 

seconds) and the number of tokens received. The plot 

illustrates that, as the number of completion tokens increases, 

the response time generally increases as well. The trend is 

nearly linear. 

We also tested whether some variations caused by factors 

such as network bandwidth, server load and latency within 

the cloud infrastructure could result in differing levels of 

delay. We analyzed whether a network congestion during 

peak usage times could result in slower response times, i.e. 

during cloud resources manage a higher volume of requests. 

We varied also the type of the request content: question 

explanation (e.g. “Tell in a childish way about the planet 

Saturn”) and fairy tale generation (e.g. “Tell me a fairy tale 

about: a cat on a tree”). From Figures 5 and 6, we can 

conclude that the relationship between received tokens and 

response time is not significantly affected by the type of 

query content, however it slightly depends on network 

congestion. Low link speeds result in delays of about 1 to 2 

seconds, although this is not always the case when fewer 

tokens are received. 

 
Fig. 4 Relationship between the API response time (in seconds) and the 
number of tokens received 

 

Fig. 5 Relationship between the API response time (in seconds) and the 
number of tokens received according to the network congestion for question 
explanation 

 

Fig. 6 Relationship between the API response time (in seconds) and the 
number of tokens received according to the network congestion for fairy tale 
generation 

 

Fig. 7  Relationship between the API response time (in seconds) and the server 
congestion 

C. Discussion 

Knowing the fast response of web-based chat BgGPT, our 

results show latency in response times when accessing chat 

BgGPT APIs. We can explain this by several factors, the 

primary one being that when using APIs, requests and 

responses must traverse the internet, which can lead to delays. 

In difference, web-based chat GPT is optimized to reduce this 

latency, particularly if it is hosted on servers with some 

optimizations for the user. Additionally, API requests often 



incur overhead for authentication, data formatting, and other 

protocol-specific requirements, further increasing response 

times. The server load handling API requests can also vary, 

leading to slower response times during peak usage periods, 

although we didn’t observe this (Fig. 7). 

The results presented in Figures 4 to 6 align with the 

findings of Patil and Gudivada [14], which discusses the 

linear relationship between Large Language Models (LLMs) 

latency and output token count. A detailed analysis 

explaining the linear relationship between LLM latency and 

the number of output tokens, outlining a formula for total 

response time that includes a constant factor plus a term 

proportional to the output token count, can be seen in papers 

[15] and [16]. 

In the future, to improve response time and minimize 

latency, we plan to test the INSAIT-Institute/BgGPT-7B-

Instruct-v0.2 model by running it locally after downloading 

and installing it on a local server. Currently, the available 

model on Hugging Face is "mistralai/Mistral-7B-v0.1" and 

can be accessed at https://huggingface.co/mistralai/Mistral-

7B-v0.1. However, we expect new challenges related to 

limited or expensive computational resources. 

IV. CONCLUSIONS 

The study proposed design-based research aimed at 

optimizing the integration of text-generative GPT models, 

particularly BgGPT, into various SARs with minimal 

programming skills. The main concept involves developing 

an Express-based web server as the backend infrastructure, 

which enables access to GPTs APIs and local modules of 

SARs through standard TCP and HTTP protocols. On the 

front end, users can access the server GET and POST 

endpoints via Blockly blocks, providing a visual 

programming environment that simplifies application design 

and allows for customization of conversation flows. After 

evaluating the response times, it was determined that the 

delays are not attributable to network or cloud server 

congestion. Factors such as network speed, specific days of 

the week, times of day and the types of request content were 

considered, however the latency primarily arise from using 

APIs. The slow responses come from the overhead for 

authentication, data formatting, and other protocol-specific 

requirements. Further research is planned to enhance the 

response times. 
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