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Abstract— This paper is a study of the longitudinal stability 

of a wheeled mobile robot with a variable center of mass position 

depending on the longitudinal position of the static component 

of the center of mass and the range of longitudinal movement of 

its movable component. The calculations are based on 

D’Alembert’s principle. The results represent values of the 

permissible driving/braking force and permissible 

acceleration/deceleration for a given position of the center of 

mass at which the robot keeps stability. 
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I. INTRODUCTION 

The problems addressed in the paper are in the field of 
mobile robotics. They are about achieving a reasonable 
compromise between stability and controllability when 
movement. 

By increasing the wheelbase of a wheeled robot, greater 
stability is achieved in the longitudinal direction, but this also 
leads to an increase in the required turning time. The question 
here is whether a variable center of mass position can be used 
to increase the longitudinal stability of the robot instead of 
achieving it by increasing the wheelbase 

Usually, in similar studies, differential equations are used 
[1], [2], [4], [5] to represent the mathematical model. Instead, 
the principle of kinetostatics is used here, which considers an 
equilibrium system of forces, including inertial forces [6]; the 
accuracy of the calculations does not deteriorate. 

The aim of the study is to determine the limit 
traction/braking forces and limit accelerations/decelerations at 
a variable position of the robot's center of mass, at a given 
mass and geometric proportions of the robot and to compare 
at what wheelbase length and fixed center of mass position, 
these limit forces and accelerations can be achieved. To 
achieve the goal, the following tasks are set: 

 To draw a scheme of the experimental setup, which 
includes a structural scheme of a four-wheeled mobile 
robot and the forces acting on it during 
acceleration/deceleration. 

 To determine a range in the longitudinal direction in 
which the position of the center of mass can move. 

 To determine what percentage of the total mass of the 
robot is the movable mass, through which the 
longitudinal position of the center of mass can be 
influenced. 

 Formulate equations to find the limit traction/braking 
force and limit acceleration/deceleration at which the 
robot begins to lose stability. 

The hypothesis is that certain values of the limit 
longitudinal forces and accelerations can be achieved with a 
shorter base if the robot is constructed with a variable position 
of the center of mass in the longitudinal direction and this 
feature of the construction is used for balancing. 

A criterion for loss of stability is the occurrence of a zero 
or negative value of the support reaction for any of the wheels 
of the robot. 

II. METHODS AND MATERIALS 

A. Brief theory 

In Fig. 1 shows a longitudinal projection of the researched 
type of robot, which has rear driving wheels. 

The total mass and position of the robot's center of mass is 
formed by the following components, which may be included 
in the structure and, possibly, the load: 

 Body; 

 Suspension; 



 

Fig. 1. Schematic of the robot in general view 

 

 Wheels; 

 Engine(s); 

 Transmission; 

 Equipment; 

 Accumulator battery, which can be of considerable 
mass if the motors are electric; 

 Payload; 

 Fuel tank; 

 Possibly ballast. 

 

The mass/center of mass may possess a stationary, 𝑚𝑐𝑠 
and movable component – 𝑚𝑐𝑚 (Fig. 2). For example, if 
ballast is included in the total mass, and it is mounted with 
the ability to move, it can be used to change the position of 
the center of mass, for the purpose of balancing during 
movement or positioning. Instead of ballast, however, if the 
construction allows it, one of its components can be used. In 
this way, the mass of the ballast will be subtracted from the 
total mass and the robot will be lighter. For example, in an 
electric drive, the battery has considerable mass, and this 
allows it to be used for balance, as long as a mechanism is 
provided to move it quickly. 

According to [3], the mass of the battery of an electric car 
is 30 – 35% of its total mass. The ratio of the masses of the 
battery and the total mass of the robot for this study is 
assumed to be 0.33; that is, if the robot's battery is in use for 
a moving mass along its longitudinal axis, it 𝑚𝑐𝑚 = 0.33𝑚𝑐. 

On the other hand, the displacement of the battery for 
balancing purposes is limited by its adjacent robot 
components. For the considered structure, it is assumed that 
the displacement range of the moving component of the 
center of mass is 𝑥𝑚𝑐𝑚

𝜖[𝑥𝑚𝑐𝑠 − 𝑙𝑟/2; 𝑥𝑚𝑐𝑠 + 𝑙𝑓/2] , when 

𝑥𝑚𝑐𝑠
= 𝑐𝑜𝑛𝑠𝑡 ≡ 𝑥𝑚𝑐0

≡ 𝑥𝑚𝑐𝑚0
. 

The notations used in the mathematical model and those 
of fig. 2, are as follows: 

 𝑂𝑥𝑧 – coordinate system related to the body of the 
robot; 

 𝑚𝑐 – center of mass of the robot; 

 𝑚𝑐𝑠 – static component of the center of mass; 

 𝑚𝑐𝑚 – movable component of the center of mass; 

 𝐴𝑟 – position of the support points of the rear wheels; 

 𝐴𝑓 – position of the support points of the front wheels; 

 𝑙 = 0.5 [𝑚] – wheel base; 

 𝑙𝑟  – distance along the x axis from the center of mass 
to the support points of the rear wheels; 

 𝑙𝑓 – distance along the x axis from the center of mass 

to the support points of the front wheels; 

 ℎ𝑚𝑐 = 0.1 [𝑚] – distance from the mass center to the 
road; 

 𝑚 = 3 [𝑘𝑔] – mass of the robot; 

 𝑔 = 9.807 [𝑚/𝑠2] – average ground acceleration (in 
the general case, the gravitational acceleration is a 
parameter); 

 𝑎 – acceleration of the robot; 

 𝑎𝑡𝑟 – positive acceleration of the robot; 

 𝑎𝑏𝑟  – deceleration of the robot; 

 𝑎𝑝 – limit acceleration of the robot; 

 𝑎𝑡𝑟𝑝 – limit positive acceleration of the robot; 

 𝑎𝑏𝑟𝑝 – limit deceleration of the robot; 

 𝐹𝑔 – weight; 

 𝐹𝑡𝑟 – traction force; 

 𝐹𝑏𝑟 – braking force; 

 𝐹𝑡𝑟𝑝 – limit traction force; 

 𝐹𝑏𝑟𝑝 – limit braking force; 

 𝐹𝑖𝑛 – inertia force; 

 𝐹𝑠𝑟 – support reaction at the rear wheels; 

 𝐹𝑠𝑓 – support reaction at the front wheels; 

 𝐹𝑟𝑟; 𝐹𝑟𝑓 – frictional forces during rolling, on rear and 

front wheels, respectively. 

The mathematical model of the robot is built according to 
the principle of kinetostatics, for which in this case it is 
necessary to compile a system of two moments and one 
projection equation according to the setup in Fig. 2: 

 

 

Fig. 2. Schematic of the robot with a coupled coordinate system and the 

acting forces (longitudinal projection) 



|

∑ 𝑀𝐴𝑟𝑖
= 0

  ∑ 𝑀𝐴𝑓𝑖
= 0  

∑ 𝑥𝑖 = 0   

   (1) 

|

𝐹𝑔 𝑙𝑟 + 𝐹𝑖 ℎ𝑚𝑐
+ 𝐹𝑠𝑓

 𝑙 = 0

𝐹𝑔 𝑙𝑓 + 𝐹𝑖  ℎ𝑚𝑐
+ 𝐹𝑠𝑟

 𝑙 = 0

𝐹𝑡𝑟 + 𝐹𝑖𝑛 = 0

 (2) 

If the robot is equipped with the necessary sensors for 
reading the traction force and an actuator for supplying the 
required traction force 𝐹𝑡𝑟 , i.e. if 𝐹𝑡𝑟  is a parameter, the 
support reactions of the wheels remain unknown in the 
system. The remaining terms in the equations are either 
constants or parameters: 

𝐹𝑔 = 𝑚 𝑔   (3) 

𝑙 = 𝑥𝐴𝑓
− 𝑥𝐴𝑟

   (4) 

The following dependence determining the starting 
position of the center of mass is assumed: 

𝑙𝑟 =
1

3
𝑙;  𝑙𝑓 =

2

3
𝑙; (𝑙 = 𝑙𝑟 + 𝑙𝑓)  (5) 

For the support reactions, with positive acceleration, we 
get: 

𝐹𝑠𝑓
=

𝐹𝑡𝑟 ℎ𝑚𝑐−𝑚 𝑔 𝑙𝑟

𝑙
  (6) 

𝐹𝑠𝑟
=

𝐹𝑡𝑟 ℎ𝑚𝑐+𝑚 𝑔 𝑙𝑓

𝑙
  (7) 

For the support reactions, at negative acceleration, we get: 

𝐹𝑠𝑓
=

𝐹𝑏𝑟 ℎ𝑚𝑐+𝑚 𝑔 𝑙𝑟

𝑙
  (8) 

𝐹𝑠𝑟
=

 𝑚 𝑔 𝑙𝑓−𝐹𝑏𝑟 ℎ𝑚𝑐

𝑙
  (9) 

According to the selected loss of stability criterion, in 
order to find the limit driving and braking forces, under 
acceleration/deceleration, we assume the support reactions to 
be zero in the following two equations: 

𝐹𝑡𝑟𝑝
=

𝑚 𝑔 𝑙𝑟−𝐹𝑠𝑓  𝑙

ℎ𝑚𝑐

      (10) 

𝐹𝑡𝑟𝑝
=

𝑚 𝑔 𝑙𝑓−𝐹𝑠𝑟𝑙

ℎ𝑚𝑐

        (11) 

 

Because 𝐹𝑡𝑟𝑝 = 𝑚𝑎𝑡𝑟𝑝 ; 𝐹𝑏𝑟𝑝 = 𝑚𝑎𝑏𝑟𝑝 , then again for 

support reactions equal to zero: 

𝑎𝑡𝑟𝑝 =
𝑚 𝑔 𝑙𝑟−𝐹𝑠𝑓

 𝑙

ℎ𝑚𝑐  𝑚
=

𝑔 𝑙𝑟

ℎ𝑚𝑐

−
𝐹𝑠𝑓

 𝑙

ℎ𝑚𝑐  𝑚
  (12) 

𝑎𝑏𝑟𝑝 =
𝑚 𝑔 𝑙𝑓−𝐹𝑠𝑟 𝑙

ℎ𝑚𝑐  𝑚
=

𝑔 𝑙𝑓

ℎ𝑚𝑐

−
𝐹𝑠𝑟  𝑙

ℎ𝑚𝑐  𝑚
  (13) 

B. Implementation 

For this study, for design reasons, it is assumed that the 
moving component of the center of mass can move in the 
range 𝑥𝑚𝑐𝑚

𝜖[𝑥𝑚𝑐𝑠 − 𝑙𝑟/2; 𝑥𝑚𝑐𝑠 + 𝑙𝑓/2]. Given that 𝑚𝑐𝑚 =
0.33𝑚𝑐 and at the specified range for the moving component, 
the position of the center of mass along the axis 𝑥 is: 

𝑥𝑚𝑐 =
∑ 𝑚𝑖𝑥𝑖

∑ 𝑚𝑖
=

𝑥𝑚𝑐𝑚+2𝑥𝑚𝑐𝑠

3
  (14) 

If in (14) the minimum and maximum values from the 
range of are entered 𝑥𝑚𝑐𝑚

, the movement of the general 

center of mass will be in the range: 

𝑥𝑚𝑐
𝜖[𝑥𝑚𝑐𝑠 − 𝑙𝑟0

/6; 𝑥𝑚𝑐𝑠 + 𝑙𝑓0
/6], (𝑥𝑚𝑐𝑠

= 𝑐𝑜𝑛𝑠𝑡 ≡ 𝑥𝑚𝑐0
). 

Experiments are conducted for acceleration and 
deceleration. 

The steps in performing the calculations are as follows: 

 Values for the constants are determined. 

 The ground acceleration 𝑔, mass 𝑚, base, 𝑙and height 
of the center of mass ℎ𝑚𝑐 remain the same for all 
calculations. 

 The parameters are defined: 

- For acceleration calculations, 𝑙𝑟  takes six values: 
0.167;  0.183; 0.200; 0.217; 0.233; 0.250 [m]. 

- For deceleration calculations, 𝑙𝑟  takes the values: 
0.167; 0.133; 0.100; 0.067; 0.033; 0.000 [m]. 

- For acceleration calculations, 𝑙𝑓  takes six values: 

0.333; 0.317; 0.300; 0.283; 0.267; 0.250 [m]. 

- For deceleration calculations, 𝑙𝑓  take the values: 

0.333; 0.367; 0.400; 0.433; 0.467; 0.500 [m]. 

- The distance between the wheel axles and the center 
of mass in initial position ( 𝑥𝑚𝑐𝑠

≡ 𝑥𝑚𝑐𝑚
) are 

dependent: 𝑙𝑟 =
1

3
𝑙;  𝑙𝑓 =

2

3
𝑙, (𝑙 = 𝑙𝑟 + 𝑙𝑓). 

 The force of gravity is determined according to the 
values of the earth's acceleration and mass: 𝐹 = 𝑚𝑔. 

 For positive acceleration, the limit traction force is 
calculated by the equation: 𝐹𝑡𝑟𝑝

= 𝑚𝑔𝑙𝑟/ℎ𝑚𝑐. 

 For deceleration, the limit braking force is calculated 
using the equation: 𝐹𝑏𝑟𝑝

= 𝑚𝑔𝑙𝑓/ℎ𝑚𝑐 . 

 The limit positive acceleration is 𝑎𝑡𝑟𝑝
= 𝑔𝑙𝑟/ℎ𝑚𝑐. 

 The limit deceleration is 𝑎𝑏𝑟𝑝
= 𝑔𝑙𝑓/ℎ𝑚𝑐. 

 

I. EXPERIMENTS AND RESULTS 

A. Subject of experiments 

The experiments are carried out on a design scheme of a 
four-wheel mobile robot with rear drive, with a variable 
position of the center of mass in the longitudinal direction. 



B. Restrictions 

The range of motion of the moving component of the 
center of mass is: 

𝑥𝑚𝑐𝑚
𝜖[𝑥𝑚𝑐𝑠 − 𝑙𝑟/2; 𝑥𝑚𝑐𝑠 + 𝑙𝑓/2]. 

The wheels contact the road at a point. Rolling friction 
forces are neglected. It is assumed that the motion occurs 
without slipping. It is also assumed that the robot body and 
its wheels are perfectly rigid, i.e. no deformations during 
movement. 

C. Results 

The results are presented in graphic form (Fig. 3, Fig. 4, 
Fig. 5, Fig. 6).  

The first experiment is during acceleration, and the 
second – during braking. Driving wheels are the rear, and at 
limit traction force/limit acceleration, the support reactions at 
the front wheel axle tend to zero. During braking, the front 

 

 

Fig. 3. The value of 𝑙𝑟 at the specific acceleration point (red color) is 0.222 

[m] 

 

 

Fig. 4. The value of 𝑙𝑟 at the specific traction point (red color) is 0.222 [m] 

wheel axle resistances increase and at limit braking 
force/limit deceleration, the rear wheel axle resistances tend 
to zero, i.e. in this case, the braking force acts exclusively 
through the front wheels. 

The studied construction scheme has a wheel base 𝑙 =
0.5 [𝑚] and a movable center of mass with a range of motion 

𝑥𝑚𝑐
𝜖[𝑥𝑚𝑐𝑠 − 𝑙𝑟0

/6; 𝑥𝑚𝑐𝑠 + 𝑙𝑓0
/6], (𝑥𝑚𝑐𝑠

= 𝑐𝑜𝑛𝑠𝑡 ≡ 𝑥𝑚𝑐0
). 

 

II. CONCLUSION 

The longitudinal stability of a four-wheeled mobile robot 
was studied depending on the longitudinal position of its 
movable center of mass. For certain positions of the center of 
mass, the limit force and the limit acceleration at which the 
robot loses longitudinal stability have been calculated. 

Characteristic points represent the limit forces and limit 
accelerations when the moving component of the center of 
mass is in the extreme front and extreme rear positions. 

 

 

Fig. 5. The value of 𝑙𝑓 at the specific deceleration point (red color) is 0.361 

[m] 

 

 

Fig. 6. The value of 𝑙𝑓 at the specific braking point (red color) is 0.361 [m] 



The studied construction scheme has a wheel base 

𝑙 = 0.5 [𝑚] and a movable center of mass with a range of 
motion 
𝑥𝑚𝑐

𝜖[𝑥𝑚𝑐𝑠 − 𝑙𝑟0
/6; 𝑥𝑚𝑐𝑠 + 𝑙𝑓0

/6]; (𝑥𝑚𝑐𝑠
= 𝑐𝑜𝑛𝑠𝑡 ≡ 𝑥𝑚𝑐0

).  

In order to compare this design scheme with a fixed center 
of mass scheme, in terms of limit longitudinal forces and 
accelerations, the wheelbase 𝑙𝑓𝑖𝑥 of the fixed center of mass 

scheme must be a sum of 𝑙𝑟 𝑚𝑎𝑥 and 𝑙𝑓 𝑚𝑎𝑥, established in the 

experimental part of the article, i.e. 𝑙𝑓𝑖𝑥 = 𝑙𝑟 𝑚𝑎𝑥 + 𝑙𝑓 𝑚𝑎𝑥 =
0.222 + 0.361 = 0.583 [𝑚]. Thus, in the specific case, the 
base 𝑙𝑓𝑖𝑥 is with 16.6% longer than 𝑙. Therefore, the use of a 

movable center of mass in the construction of wheeled mobile 
robots would be a suitable approach to achieve more compact 
dimensions, better maneuverability and possibly a lighter 
construction. 
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