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Abstract—Robotic and mechatronic systems are increasingly 

connected via open communication protocols and cloud services, 

exposing safety-critical operations to cyber threats such as 

spoofing, denial-of-service, and data poisoning [4], [5]. Testing 

security measures directly on physical robots is costly, disruptive, 

and often unsafe. This paper proposes a simulation-based digital 

twin (DT) framework that faithfully replicates a robotic system’s 

kinematics, dynamics, and network behaviour in a virtual 

environment, enabling risk-free cybersecurity experimentation. 

Within this DT, an artificial intelligence (AI)–driven adaptive 

defence module combines traffic-based anomaly detection with 

reinforcement learning agents that learn to respond to evolving 

attacks by reconfiguring control or communication policies. A 

conceptual proof-of-concept testbed is presented using a simulated 

ROS 2 2-controlled manipulator subjected to synthetic network 

intrusions. Preliminary simulation results indicate that the 

adaptive AI defence detects malicious traffic earlier and restores 

normal operation faster than a static rule-based intrusion 

detection system. The study highlights digital twins as a practical, 

low-risk platform for developing and validating next-generation 

cybersecurity strategies for robotic systems. 

Keywords—AI-Augmented Digital Twins, Robotic 

Cybersecurity, Resilient Robotics, Real-Time Simulation Intelligent 

Threat Mitigation, Adaptive System Defence, Simulation-Driven 

Security.  

I. INTRODUCTION 

Robotic and mechatronic systems move rapidly from isolated, 

pre-programmed machines toward networked, adaptive cyber-

physical systems [9]. Modern industrial manipulators, 

collaborative robots (cobots), autonomous mobile robots 

(AMRs), and smart production cells routinely connect to 

enterprise networks, cloud platforms, and remote maintenance 

services. While this connectivity enables flexible production 

and real-time monitoring, it also broadens the attack surface [2]. 

Network intrusion, spoofed sensor data, denial-of-service 

(DoS), and machine-learning model poisoning have already 
been demonstrated against robotic middleware such as the 

Robot Operating System (ROS/ROS 2) [4]; [5]. 

Traditional approaches to robot cybersecurity testing rely 

on laboratory hardware setups or penetration tests performed on 

physical robots. These methods face several barriers: 

Safety and cost: Aggressive attack simulation can damage 

equipment or stop production. 

Limited repeatability: Physical experiments are time-

consuming and sensitive to hardware differences [11]. 

Restricted access: Researchers often lack specialized robot 
hardware or cannot change production systems for security 

testing.  

Consequently, many proposed security solutions for 

robotics remain conceptual or poorly validated. 

Digital twins (DTs) — high-fidelity virtual replicas of physical 

systems — have emerged as robust tools for design, 

monitoring, and predictive maintenance. However, their 

potential for cybersecurity research in robotics is only starting 

to be explored [7]; [14]. A DT can integrate accurate physics 

simulation with network and software emulation to create a 

safe, controllable environment for injecting cyber-physical 

threats and evaluating defences before deployment. 
Parallel to this, artificial intelligence (AI) — especially 

machine learning–based anomaly detection and reinforcement 

learning (RL) — has shown promise for adaptive cyber 

defence. Unlike static, rule-based intrusion detection systems 

(IDS), AI can learn to recognize evolving attack patterns and 

dynamically adjust control or communication strategies to 

maintain safe operation [6]; [15].  

This paper proposes a simulation-based DT framework for 

robotic cybersecurity testing and AI-driven adaptive defence.  

The key contributions are: 

Digital twin architecture for secure robotics: a virtual testbed 
that models robotic kinematics/dynamics and network 

behaviour to support safe cyber-attack experimentation. 

AI-driven adaptive defence module: integration of anomaly 

detection and RL-based mitigation policies trained entirely in 

simulation. 

Proof-of-concept evaluation: a conceptual study using a 

ROS 2 2-controlled manipulator, demonstrating how AI-

enabled defence can reduce detection latency and recovery time 

compared with static IDS approaches. 

This work is intended for researchers and practitioners who lack 

access to physical robots but need a risk-free environment to 

design and validate security mechanisms for robotic and 
mechatronic systems. 



 

II. BACKGROUND AND RELATED WORK 

A. Digital Twins in Robotics and Mechatronics 

The Digital Twin (DT) concept originated in aerospace and 
manufacturing, where high-fidelity virtual models are 
continuously synchronised with their physical counterparts. DTs 
have become key enablers for simulation-driven design, 
predictive maintenance, and system optimisation in robotics  
[3]. 

A typical robotic DT integrates three layers: 

1. Physical Layer – the actual robot and its 

environment; 

2. Virtual Layer – a physics-based simulation 

replicating kinematics, dynamics, and sensor feedback; 

3. Data Synchronisation Layer – bidirectional data 

exchange that ensures the virtual model mirrors the physical 

state in near real time. 

Modern simulation tools such as Gazebo, Webots, 

CoppeliaSim, and Unity Robotics support the creation of 
DTs that accurately mirror mechanical and control behaviour. 

Recent work extends DTs with network emulation and 

cloud connectivity, allowing researchers to study latency, 

packet loss, or system integration across Industrial IoT 

architectures [12]. However, DTs are rarely applied beyond 

performance optimisation or maintenance. Their potential as 

cybersecurity sandboxes—where virtual replicas are used to 

simulate and analyse cyber-physical threats without risking 

hardware—remains underexplored [7]. 

B. Cybersecurity Challenges in Robotic Systems 

Networked robots operate as cyber-physical systems 
(CPS), integrating embedded controllers, sensors, actuators, and 
network interfaces [1]. This tight coupling introduces 
vulnerabilities across multiple layers: 

• Communication Layer: protocols such as ROS 1/ROS 
2, OPC UA, and MQTT were designed for openness 
rather than confidentiality [4]. Research shows robots 
can be compromised via spoofed commands, replayed 
sensor data, and adversarial perception attacks [10]; [13]. 

• Control Layer: unauthorised modification of 
parameters or firmware manipulation can degrade 
precision or cause unsafe motion. 

• Perception Layer: adversarial inputs to camera or 
LIDAR sensors can mislead AI-based perception 
modules. 

Existing defensive measures are largely static—network 
firewalls, signature-based intrusion detection, or cryptographic 
authentication (García et al., 2014). These solutions struggle 
against dynamic, adaptive attacks in heterogeneous 
environments typical of Industry 4.0 robotic cells. Moreover, 
testing such defences on operational robots is impractical due to 
safety and downtime constraints, highlighting the need for 
simulation-based security validation. 

C. AI-Driven Adaptive Defence Mechanisms 

Artificial intelligence techniques are increasingly being 
investigated to enhance cyber resilience. Machine-learning-
based intrusion detection systems (ML-IDS) can identify 
abnormal traffic patterns using statistical, supervised, or 

unsupervised models such as support vector machines, 
autoencoders, and graph neural networks [6]. 

Beyond detection, reinforcement learning (RL) enables 
systems to select mitigation actions autonomously—e.g., 
rerouting communication, isolating components, or adjusting 
control parameters—to maintain safe operation during an attack 
[15]. 

Recent studies in industrial networks and autonomous 
vehicles show that AI-enabled agents can outperform static 
rules by learning temporal patterns of attacks and responding in 
real time [8]. Nevertheless, most of these approaches are 
evaluated using simplified network traces or theoretical models 
rather than in realistic robotic control loops. 

D. Research Gap and Motivation 

While DTs and AI have been widely explored individually, 
their integration for robotic cybersecurity remains limited 
[7]. No standardised, simulation-based frameworks currently 
exist for training and validating AI-adaptive cybersecurity 
mechanisms on robotic control loops. Current literature seldom 
combines a virtual robotic twin with AI-adaptive defence 
agents that can learn and test mitigation strategies entirely in 
simulation. 

Bridging this gap can provide: 

• A risk-free environment for attack injection and 
defence training; 

• Quantitative insights into detection latency, false-
positive rates, and control-loop stability under attack; 

• A reusable framework for researchers without physical 
hardware access. 

E. Conceptual Integration and Research Evolution  

To consolidate the insights from the reviewed literature, 
Figure 1 illustrates the conceptual convergence among Digital 
Twins (DT), Artificial Intelligence (AI), and Cybersecurity (CS) 
within the robotics domain.  

 

Fig. 1. Conceptual convergence of DT, AI, and SC domains. 
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DT provides the simulation backbone for virtual 
experimentation, AI contributes learning and adaptive decision-
making capabilities, and CS ensures data integrity, 
confidentiality, and system resilience.  

The overlapping area among these three domains defines the 
research focus of this study – the development of an AI-
Augmented DT for Robotic Cybersecurity. The intersection 
defines the proposed research focus: AI-Augmented DT for 
Robotics Cybersecurity.  

Building on this conceptual mapping, Figure 2 illustrates the 
evolutionary trajectory of robotic systems from traditional, 
isolated industrial machines toward intelligent, networked, and 
cyber-physical systems.  

Each stage represents a significant milestone in the digital 
transformation of robotics—from deterministic control logic to 
cloud-connected architectures, and finally to simulation-driven, 
AI-enhanced defensive ecosystems. This timeline underscores 
that AI-enabled DT Security is not an isolated concept but the 
next logical phase in the technological evolution of robotics.

 

Fig. 2. Evolution of robotics from isolated industrial units towards AI-

enhanced DT security environments. 

The timeline highlights the transition from deterministic 
control to adaptive, learning-based cyber-physical defence.  

These two figures illustrate the theoretical convergence and 
technological evolution that motivate the framework proposed 
in this paper. While Figure 1 defines the study’s 
interdisciplinary foundation, Figure 2 positions the research 
within the ongoing digital transformation of robotics, 
establishing a clear context for the Proposed Digital Twin 
Security Testbed described in the following section.  

III. PROPOSED DIGITAL TWIN SECURITY TESTBED 

This section describes the design and internal mechanics of 
the Digital Twin Security Testbed (DTST) used throughout 
this study. The DTST is a fully simulated, modular environment 
that enables rapid, reproducible experimentation with cyber-
physical attacks and AI-driven mitigation strategies for robotic 
systems. The design follows five core components: (1) virtual 
robot model, (2) network emulation, (3) threat injection engine, 
(4) AI defence module, and (5) synchronization & simulation 
loop. These components operate in a closed feedback cycle that 
supports iterative learning and quantitative evaluation. 

1) Virtual robot model (physics & control) 
The DTST's heart is a virtual robot model that provides 

realistic kinematic and dynamic behaviour without requiring 
physical hardware. Our reference setup uses a 6-DoF industrial 
manipulator model implemented in a physics simulator (e.g., 

Gazebo or ODE within Gazebo / Webots). The simulator 
exposes: 

2) Joint-level states (position, velocity, torque) and  

sensor streams (encoders, force-torque, IMU, 

camera/LIDAR placeholders). 

3) A control interface representing a typical  

PLC/robot controller loop (PID/trajectory follower) that 

subscribes to command topics and publishes telemetry. 

4) Pluggable model fidelity (collision geometry, friction, 

sensor noise) so experiments can trade realism for 

computational efficiency. 
The virtual robot provides the baseline “normal” behaviour 

used to train anomaly detectors and to measure the impact of 
attacks on motion accuracy, task completion, and safety-related 
metrics. 

B. Network emulation: ROS 2 traffic, delay/jitter injection, 

replay 

To model real-world cyber conditions, the DTST includes a 
network and communication emulator tightly coupled with 
the virtual robot: 

• Middleware emulation: ROS 2 is the primary  

Middleware replica, including publishers/subscribers, 
quality of service settings, and topic namespaces typical 
for manipulator controllers and perception stacks. 

• Network impairments: A configurable emulator layer 
injects latency, jitter, packet loss, and bandwidth 
constraints into message flows. Parameters are 
adjustable per topic to simulate congested Ethernet, 
wireless links, or intermittent corporate VPNs. 

• Trace replay: recorded ROS 2 traffic traces  

(benign and malicious) can be replayed deterministically 
for benchmarking. This supports reproducibility and the 
construction of standardized test suites. 

This emulation enables the study of how timing and 
message-reliability deviations affect closed-loop control and AI 
perception modules. 

C. Threat Injection Engine (DoS, spoofing, data poisoning) 

The Threat Injection Engine (TIE) is the adversarial 
controller that generates controlled attack vectors. It supports 
three classes of attacks relevant to robotic CPS: 

1) Denial-of-Service (DoS) / Flooding: rapid message 

bursts targeting specific topics (e.g., /joint_cmd) or nodes 

(controller) to saturate throughput and increase latency—

parameters: packets per second, duration, target topic list. 

2) Spoofing / Replay: forging or replaying ROS 2 messages 

to substitute control commands or sensor readings. Modes 

include immediate injection, delayed replay, and gradual drift 

insertion—parameters: injection timing, amplitude, and topic 

filter. 

3) Data Poisoning: progressive modification of sensor 

streams (e.g., adding bias to encoder readings or corrupting 

vision inputs) intended to mislead learning-based perception or 

degrade controller performance—parameters: poison rate, 

distribution, entry point. 
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Each scenario is parameterizable and can be orchestrated in 
campaigns (sequence of attacks with escalation), enabling 
stress-testing of detection and mitigation strategies. All injected 
events are logged with ground-truth labels for supervised 
evaluation. 

D. AI defence module: anomaly detection + RL mitigation 

policy 

The AI defence stack is divided into two cooperating 
subcomponents—real-time anomaly detection and a 
reinforcement learning (RL) mitigation policy—supported by 
analytics for evaluation. 

1) Anomaly detection (online monitoring) 

a) Input features: topic-level message rates, inter- 

arrival times, payload statistics (e.g., mean/variance of joint 

positions), control error residuals (difference between 

commanded and observed states), and lightweight derived 

features (spectral, time-windowed aggregates). 

b) Model family: unsupervised models are preferred  

for zero-day detection, including sequence autoencoders, 

isolation forests, and, where topology matters, graph-based 

detectors on the ROS node-topic graph. 

c) Decision logic: anomaly score → thresholding →  

alert. Thresholds are calibrated using baseline simulation 

runs to balance detection latency and the false-positive rate. 

Alerts are timestamped and routed to the RL agent input. 

E. Reinforcement learning mitigation (policy layer) 

a) State definition: concatenation of anomaly flags,  

current network Quality of Service metrics, recent control 

errors, and a short history of system telemetry (sliding 

window). 

b) Action space: a discrete set of mitigations,  

Examples: (a) temporarily throttle or drop non-critical topics, 

(b) isolate suspect node(s) from the bus, (c) switch to a 

degraded safe controller mode (lower speed/torque limits), 
(d) trigger sensor cross-validation routines, (e) initiate topic 

re-authentication handshake. 

c) Reward function: multi-objective — negative  

penalties for unsafe behaviour (significant control error, 

collision risk), penalties for unnecessary interventions 

(avoiding overreaction), positive reward for task completion, 

and quick recovery to baseline performance. Reward shaping 

encourages conservative but effective interventions. 

d) Training regime: RL is trained entirely within  

the DTST using episodic simulations containing randomized 

attacks. Transfer learning/domain randomization techniques 

are applied to improve robustness across variations in 

simulation parameters. 

F. Operational constraints 

1) Mitigation actions must adhere to safety invariants (e.g., 

never issue commands that exceed joint limits). A safety 

supervisor enforces hard constraints to prevent learned policies 

from producing unsafe control commands even in simulation. 

2) Synchronization & simulation loop (data consistency & 

reproducibility) 

The DTST enforces strict synchronization to preserve 
temporal coherence across modules: 

3) Global simulation clock: a central time server  

(simulated wall clock) coordinates physics ticks, message 

timestamps, and attack injection events. This ensures that 

telemetry, anomaly detection inputs, and RL actions are 

aligned. 

4) Deterministic logging: All regular and injected  

messages are recorded with high-resolution timestamps and 

ground-truth labels. Logs enable deterministic replay for 
benchmarking and for offline ML training. 

5) Simulation loop cadence: The system supports  

variable tick rates (e.g., 100–1000 Hz for physics; 10–100 Hz 

for middleware), configurable per experiment. Rate limits are 

documented to clarify real-time vs. accelerated training 

modes. 

6) Evaluation metrics and experimental protocol 

(summary) 

To quantify defence performance, the DTST reports 

standardized metrics per run: 

a) Detection latency: time from attack start to anomaly 

flag. 

b) Detection accuracy: true/false positive rates on 

labelled logs. 

c) Recovery time: time until key performance indicators 

(KPIs) return within baseline bounds (e.g., tracking error below 

threshold). 

d) Operational impact: task completion rate, additional 
downtime introduced by mitigation, and computational 

overhead (CPU/latency of defence stack). 

Experiments follow a rigorously documented protocol: (a) 
baseline calibration runs (no attack), (b) single-attack 
experiments, (c) multi-attack combined scenarios, and (d) 
randomized campaign stress tests. Each experiment is repeated 
deterministically with seeded randomness to produce 
statistically meaningful results 

7) Assumptions and limitations 

a) Simulation fidelity vs. reality gap: while physics  

and network emulation are high-fidelity, but the absence of 

hardware introduces sim2real risk; we mitigate this by 

domain-randomizing simulation parameters. 

b) Scope: This DTST focuses on the middleware-level  

and sensor/command attacks, and does not model low-level 

firmware exploits or hardware fault modalities.  

c) Safety fallbacks: because this study is  

simulation-only, safety logic is enforced as hard checks; 
deploying learned policies to physical robots would require an 
independent safety validation step.  



 

 
Fig. 3. Visualize the five components in a closed loop: Virtual Robot Model 

↔ Network Emulator ↔ Threat Injection Engine → AI Defence Module → 

Synchronization & Replay / Logging, with arrows indicating data flow and 

control.) 

IV. SIMULATION EXPERIMENT DESIGN (CONCEPTUAL) 

This section describes the experimental protocol for 
evaluating the Digital Twin Security Testbed (DTST). The goal 
is to produce reproducible, statistically meaningful comparisons 
between static detection baselines and the proposed AI-adaptive 
defence under controlled, parameterised attack campaigns. The 
design is intentionally simulation-centric: all experiments are 
executed within the DTST (Section 3) using a virtual 
manipulator model, ROS 2 traffic emulation, and the threat-
injection engine. 

A. Attack scenarios 

We model three (and one combined) canonical attack classes 
targeted at robot middleware and sensor channels. Each attack 
class is parameterised to enable graded stress tests and campaign 
compositions. Each scenario is fully logged with ground-truth 
labels, enabling quantitative evaluation of detection and 
mitigation performance (Table I). 

TABLE I.  PARAMETERISED ATTACK SCENARIOS USED IN THE DTST 

EXPERIMENTS.  

Attack 
class 

Target Mode/ 
Descripti

on 

Example 
paramet

ers 
(tunable

) 

Intended 
effect on 

DTSD 

Logging & 
Ground-

truth 

Denial-
of-
Service 
(DoS) / 
Floodi
ng 

 

Control 
topics 
(e.g./ 

joint_cm), 
status 
topics, 

controller 
nodes, 

network 
interface 

High-
rate 

message 
bursts 

aimed at 
saturatin

g 
bandwid

th or 
queues; 
may be 
broad 

(network
-wide) or 
targeted 
(specific 
topic/no

de) 

Packet-
rate 

multipli
er (×), 

duration 
(s), 

target 
topic 

list, start 
time, 
burst 

pattern 

Increased 
latency/jitter, 

missed 
deadlines, 

control jitter, 
possible 
missed 

commands 
leading to 

tracking error 
or task failure 

Timestam
ped attack 
start/stop
; targeted 
topics; 
packet 
counts; 
ground-
truth 
label = 
DoS 
 

Spoofi

ng / 

Replay 

Topic 
payloads 

(command
s, sensor 

messages)
, ROS 2 
topics, 
node 

outputs. 

Injection 

of forged 

message

s or 

replay of 

recorded 

message

s 

(immedi

ate, 

delayed, 

or time-

shifted) 

to 

mislead 

controlle

r or 

percepti

on. 

Injection 

amplitu

de 

(payload 

deviatio

n), 

injection 

frequen

cy, delay 

offset 

(s), 

entry-

point 

node, 

replay 

trace ID. 

Controller 
executes 

forged 
commands or 

acted on 
stale/duplicat

ed sensor 
inputs; 
wrong 

trajectories 
or unsafe 
behavior. 

Record 
injected 
message 
content, 
orig vs 

injected 
timestam

ps; 
ground-

truth 
label = 

Spoof/Re
play 

Data 

Poison

ing 

Sensor 
streams 

(encoder, 
IMU, 

camera 
placehold

ers), 
perceptio
n inputs, 
telemetry 
used by 
learning 
modules 

Gradual 

or 

abrupt 

corrupti

on of 

sensor/d

ata used 

by 

percepti

on or 

control; 

may 

bias, 

spike or 

flip 

labels 

used by 

ML. 

Poison 
rate (% 

message
s), noise 
distribut

ion 
(Gaussia
n bias, 
spike), 
onset 

schedul
e 

(gradual 
vs 

abrupt), 
affected 
sensor(s

) 

Degraded 

perception 

accuracy, 

drifting state 

estimates, 

ML 

misclassificati

ons, 

increased 

control errors 

over time 

Logged 
corrupted 
stream 
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original vs 
poisoned 
values; 
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TABLE II.  COMBINED ATTACKS AND RANDOMIZED CAMPAIGNS 

Atack 
class 

Target Mode/ 
Descrip

tion 
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e 

parame
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(tunabl
e) 
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effect on 

DTSD 

Logging 
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tion of 
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stage 
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stochast
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attacks 
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zed 
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stress 
testing 
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on 
schedul
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attack 
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s to 
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vector 
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generaliz
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Campai
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script + 
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event 
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; global 
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gn ID; 
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mps for 
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sub-
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B. Evaluation metrics 

We adopt standard detection and system-level metrics and 
introduce control-centric KPIs relevant for robotics. Table 3 
summarises the evaluation metrics adopted to assess the 
performance of the AI-driven adaptive defence within the 
Digital Twin Security Testbed. 

1  Campaigns: Single-attack runs, combined attacks (e.g., DoS + 

spoofing), and randomized campaigns (stochastic combinations with seeded 

randomness). Each configured scenario is logged with ground-truth labels for 

offline evaluation. 



 

The metrics are grouped into three categories—detection 
quality, resilience and mitigation, and system feasibility—
covering the framework's security and operational dimensions. 

Detection metrics (e.g., Detection Latency, Precision, 
Recall, F1) quantify how quickly and accurately the system 
recognises malicious activity. Resilience metrics (e.g., Recovery 
Time, Mitigation Effectiveness, Operational Impact) capture 
how efficiently the defence restores normal operations and the 
level of disruption it introduces. 

Finally, system-level metrics (Decision Latency and CPU 
Overhead) assess the computational feasibility of real-time 
deployment.  

Each metric is formally defined within the digital twin 
simulation environment, computed automatically after each run, 
and reported as the mean ± standard deviation across multiple 
repetitions. All results are cross-referenced using the unique 
Scenario ID, Campaign ID, and Config Hash to guarantee 
traceability between the evidence logs and experimental 
artefacts. 

TABLE III.  SUMMARY OF DETECTION, RESILIENCE, AND SYSTEM-LEVEL 

METRICS FOR EVALUATING THE PROPOSED AI-ADAPTIVE DIGITAL-TWIN 

DEFENCE 

Detection metrics 

Detection latency 
(T_detect) 

time from attack start to first valid alert. 

Detection accuracy precision, recall, and F1-score computed 
on timestamped labels. 

False positive rate (FPR) fraction of alerts during benign operation. 

Mitigation & resilience metrics 

Recovery time 
(T_recover) 

time from mitigation action to restoration 
of a pre-defined baseline KPI (e.g., 
tracking error < ε). 

Mitigation effectiveness percentage reduction in KPI degradation 
(e.g., RMS tracking error) compared to 
unmitigated runs. 

Operational impact overhead induced by mitigation 
(downtime, performance loss during safe-
mode). 

System & computational metrics 

Task completion rate fraction of episodes where the 
manipulator completes the assigned task 
within constraints. 

CPU / latency overhead Detection and RL modules introduce 
additional compute and decision latency 
(necessary for real-time feasibility). 

 

Together, these metrics provide a balanced, reproducible 

performance profile that quantifies the detection capability 

of the AI modules and the stability, recovery behaviour, and 

resource cost of the integrated robotic-cybersecurity 

framework. 

C. Baselines and ablation studies 

To ensure the reliability and interpretability of the 
experimental results, the proposed AI-adaptive defence is 
evaluated against multiple baseline configurations and ablation 
variants. 

The baselines establish performance benchmarks for 
detection accuracy, resilience, and operational impact under 
non-adaptive learning. Ablation studies, in turn, isolate the 
contribution of individual components—particularly the 
reinforcement learning (RL) agent and its policy structure—

allowing a more precise understanding of each module’s 
marginal benefit. 

TABLE IV.  BASELINE AND ABLATION CONFIGURATION SUMMARY 

 
Table 4 summarizes the baseline and ablation configurations 

corresponding to Figure 4. Each configuration isolates specific 
aspects of system behaviour—from passive control (no defence) 
to dynamic learning (full RL). Together, they form the 
comparative framework for Section 5, enabling quantitative 
attribution of performance gains to the adaptive AI defence 
policy. 

D. RL training process inside the DT 

The DTST provides the RL agent with a training playground. 
Training is episodic and engineered to encourage robust, 
conservative policies. 

State, action, reward (summary) 

• State (s): compact vector combining anomaly  

scores, recent message QoS (latency/jitter), control residuals 

(command − observed), and short telemetry window 

aggregates. 

• Action (a): discrete mitigation actions (throttle non-
critical topics, isolate suspect node, switch to degraded 
controller, trigger cross-validation). 

• Reward (r): multi-objective scalar combining negative 
penalties for safety violations and control error, penalties 
for unnecessary interventions, and positive reward for 
rapid recovery and task completion. Formulated as: 

r = −α·(control_error) − β·(safety_violation) − 

γ·(intervention_cost) + δ·(task_progress), 

where weights α, β, γ, δ are tuned via pilot runs. 

 
Algorithm & hyperparameters 

• Candidate algorithms: Proximal Policy  

Configuration Purpose Key Metric Evaluated 

No defence 

(control) 

Establish lower-

bound performance 

with no detection or 

mitigation applied. 

Task completion rate, 

recovery time. 

Static IDS 

Compare adaptive 

AI against fixed 

rule-based defence. 

Detection accuracy 

(Precision / Recall / 

F1). 

Anomaly 

detector only 

Evaluate detection 

capability without 

automated 

mitigation. 

Detection latency, false 

positive rate. 

RL removed 

(ablation) 

Quantify 

contribution of 

reinforcement 

learning 

component. 

Recovery time 

improvement vs. 

anomaly-only. 

Limited RL 

action set 

Assess effect of 

restricted action 

space on resilience. 

Mitigation 

effectiveness (%), task 

completion rate. 

Network 

impairment 

variation 

Test robustness 

under different 

latency / jitter 

conditions. 

Detection latency 

sensitivity, stability 

under delay. 



 

Optimization (PPO) or Soft Actor-Critic (SAC) for continuous 

action extensions; DQN or discrete PPO for discrete action 

spaces. 

• Example hyperparameters (initial): learning rate =  

3e-4, discount γ = 0.99, clip ε = 0.2 (PPO), rollout length = 

2048 steps, batch size = 64. 

• Domain randomization: vary physics parameters 

(friction, sensor noise), network QoS, and attack intensities 

across episodes to improve robustness and reduce the sim2real 

gap. 
Training regime 

• Phase 1 (warm-start): train on benign episodes to  

establish conservative baseline behaviours. 

• Phase 2 (attack curriculum): progressively  

introduce attacks from low to high severity (curriculum 

learning), enabling the agent to acquire safe mitigation 
primitives before confronting complex campaigns. 

• Phase 3 (mixed campaigns): randomized attack  

combinations to generalise policy. 
Safety constraints during training 

• A safety supervisor enforces hard constraints (e.g.,  

joint limits, emergency stop) to prevent RL from generating 

unsafe commands. Policies are constrained or masked in action 

selection to prevent prohibited behaviour. 
Evaluation & transfer 

• Evaluate checkpoints periodically on a separate  

set of held-out attack scenarios. Select the best policies using a 

validation metric that combines recovery time and low 
intervention cost. Optionally, offline policy distillation can be 

performed for lower-latency deployment. 

E. Assumptions and limitations (simulation-only) 

We explicitly state the experiment design assumptions and 
the resulting limitations: 

Assumptions: 

• Middleware fidelity: ROS 2 emulation captures  

essential timing and topic semantics relevant to attacks 

modelled (but not all vendor-specific behaviour). 

• Sensor placeholders: high-fidelity perception  

modules (e.g., camera neural nets) are approximated via 

simplified models or precomputed traces where necessary. 

• Deterministic replay: deterministic seeds guarantee 
reproducibility inside DTST. 

Limitations: 

• Sim2real gap: policies trained in simulation may  

not transfer out of the box to physical robots due to 

unmodelled hardware idiosyncrasies and firmware-level 

vulnerabilities. Domain randomization reduces but does not 

eliminate this gap. 

• Scope of attacks: the threat model focuses on  

middleware and sensor/command channels; hardware-level 

exploits, side-channel attacks, or supply-chain firmware 

compromises are out of scope. 

• Real-time constraints: The computational  

overhead observed in the simulation must be validated on the 

target real hardware to ensure the control loop's timeliness. 

• Safety validation for deployment: any policy  

intended for physical deployment requires independent 

safety certification and rigorous hardware-in-the-loop 

testing. 

F. Reproducibility & artifact sharing 

To support transparency, reproducibility, and community 
adoption, the Digital Twin Security Testbed (DTST) will be 
accompanied by a complete set of experimental artefacts and 
configuration templates. The following elements will be 
released conceptually as part of the research package: 

1) Scenario and configuration files 

a) Parameterised attack scripts, DTST scenario  

manifests, baseline configurations, and RL training profiles.  

b) All files include deterministic seeds to ensure bit- 

level reproducibility. 

2) Containerised runtime environments 

a) Pre-configured Docker images encapsulating the  

physics simulator, ROS 2 network emulator, threat injection 

engine, and analysis tools. 

b) Images will be version-locked to prevent  

dependency drift. 

3) Logged datasets and evaluation traces 

a) Anonymised simulation logs (baseline, single- 

attack, combined campaigns). 

b) Each file includes metadata: Scenario ID,  

Campaign ID, Config Hash, and timestamp schema to support 

independent verification. 

4) Metric computation scripts and statistical analysis 

notebooks 

a) Python notebooks and helper scripts automatically  

calculate detection, resilience, and system-level metrics. 

b) Includes bootstrapped confidence intervals and  

significance tests (e.g., Mann-Whitney U). 

5) Documentation and orchestration guide 

A step-by-step manual describing how to launch the DTST, 

reproduce core experiments, extend attack scenarios, and 

retrain AI models. 

 

This reproducibility package ensures that the proposed 

framework is not only conceptually robust but also practically 
verifiable, contributing to scientific rigour and enabling other 

researchers to build upon the presented work. 

 

V. ILLUSTRATIVE RESULTS & DISCUSSION 

Although the present work focuses on the conceptual design 
and validation methodology of the DTST, preliminary 
simulation experiments provide valuable insight into expected 
defence behaviour. 



 

A. Detection behaviour and anomaly signal quality 

Across representative DoS, spoofing, and poisoning 
scenarios, the AI-driven anomaly detector demonstrates a 
consistently sharper rise in anomaly scores compared with static 
signature-based IDS baselines. Time-series plots (not shown) 
illustrate that: 

• In flooding attacks, the detector responds as soon as  

the message inter-arrival variance exceeds calibrated 

thresholds. 

• In spoofing attacks, payload-level deviations trigger  

latent-space anomalies 20–45% earlier than rule-based 

detectors. 

• For gradual poisoning, the autoencoder models  

detect distributional drift long before control performance 

visibly degrades. 

This early-warning behaviour contributes directly to reduced 

downstream recovery times. 

B. Effectiveness of RL-driven mitigation 

Policy adaptation curves indicate that the reinforcement 

learning agent converges toward stable, conservative 

mitigation strategies. Typical learned behaviours include: 

• throttling low-priority topics to stabilise bus utilisation, 

• isolating suspicious nodes when repeated anomalies 
occur, and 

• switching to a degraded safety controller during high-
severity episodes. 

Across multiple seeded campaigns, the RL-based defence 
consistently restores tracking error to baseline thresholds faster 
than static middleware-level interventions. In combined 
scenarios (DoS + spoofing), the RL policy avoids the escalation 
loops common to fixed-threshold defences. 

C. Operational overhead and real-time feasibility 

Profiling results from the simulated environment show: 

• The RL policy's decision latency remains well  

below typical ROS 2 control-loop cycles (5–10 ms). 

• CPU overhead remains moderate, with peak loads  

occurring during anomaly scoring windows rather than 

mitigation. 

• No frame drops observed in 100 Hz physics simulation 
under full defence stack load. 

These indicators suggest that the defence framework is 
computationally feasible for hardware-in-the-loop extensions, 
pending real-device validation. 

D. Practical implications for robotics manufacturers and 

integrators. 

The findings demonstrate clear value for operational 

environments: 

• DTs provide a safe sandbox to validate cyber  

resilience without risking downtime or hardware damage. 

• Adaptive AI defence outperforms static IDS in  

detection latency, false-positive avoidance, and recovery 

stability. 

• Manufacturers can leverage DTST to certify  

defensive policies before field deployment. 

• Integrators gain a method for evaluating the  

cyber-physical stability of networked robots under varying 

network conditions and operational loads. 
Overall, the DTST supports a shift from reactive, rule-based 

cybersecurity toward proactive, learning-driven resilience in 
robotic systems. 

VI. CONCLUSION & FUTURE WORK 

This paper presented a simulation-based Digital Twin 
Security Testbed (DTST) for developing, training, and 
evaluating AI-driven adaptive cybersecurity mechanisms for 
robotic systems. The DTST integrates high-fidelity physics 
simulation, ROS 2 traffic emulation, a configurable threat-
injection engine, and an anomaly-detection-plus-RL defence 
stack into a coherent, reproducible experimental environment. 

The study demonstrates that digital twins provide a low-risk, 
high-fidelity platform for cyber-physical defence research—
particularly valuable when testing on real hardware is unsafe, 
expensive, or operationally disruptive. The proposed AI-
adaptive defence exhibits improved detection latency and 
recovery behaviour compared with static IDS baselines, 
highlighting the promise of learning-enabled mitigation in 
complex robotic environments. 

Future research will extend this framework in several 
directions: 

• Multi-robot and swarm scenarios, where  

distributed attack surfaces and coordination constraints 

amplify cyber-physical risk. 

• Federated and cloud-hosted digital twins,  

enabling cross-facility resilience studies and collaborative 
defence training. 

• Hardware-in-the-loop validation, progressively  

bridging the sim2real gap through sensor-level calibration 

and network-timing alignment. 

• Integration with zero-trust and identity- 

centric architectures, positioning the DTST as a foundation 

for next-generation secure robotic ecosystems. 

As robotics continues to evolve into highly connected, 

intelligent, cyber-physical systems, simulation-driven 

security validation will become a core component of 

engineering practice. This work contributes a structured, 

extensible foundation for that transition. 
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