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Abstract—Robotic and mechatronic systems are increasingly
connected via open communication protocols and cloud services,
exposing safety-critical operations to cyber threats such as
spoofing, denial-of-service, and data poisoning [4], [5]. Testing
security measures directly on physical robots is costly, disruptive,
and often unsafe. This paper proposes a simulation-based digital
twin (DT) framework that faithfully replicates a robotic system’s
kinematics, dynamics, and network behaviour in a virtual
environment, enabling risk-free cybersecurity experimentation.
Within this DT, an artificial intelligence (AI)—driven adaptive
defence module combines traffic-based anomaly detection with
reinforcement learning agents that learn to respond to evolving
attacks by reconfiguring control or communication policies. A
conceptual proof-of-concept testbed is presented using a simulated
ROS 2 2-controlled manipulator subjected to synthetic network
intrusions. Preliminary simulation results indicate that the
adaptive Al defence detects malicious traffic earlier and restores
normal operation faster than a static rule-based intrusion
detection system. The study highlights digital twins as a practical,
low-risk platform for developing and validating next-generation
cybersecurity strategies for robotic systems.
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I.  INTRODUCTION
Robotic and mechatronic systems move rapidly from isolated,
pre-programmed machines toward networked, adaptive cyber-
physical systems [9]. Modern industrial manipulators,
collaborative robots (cobots), autonomous mobile robots
(AMRs), and smart production cells routinely connect to
enterprise networks, cloud platforms, and remote maintenance
services. While this connectivity enables flexible production
and real-time monitoring, it also broadens the attack surface [2].
Network intrusion, spoofed sensor data, denial-of-service
(DoS), and machine-learning model poisoning have already
been demonstrated against robotic middleware such as the
Robot Operating System (ROS/ROS 2) [4]; [5].

Traditional approaches to robot cybersecurity testing rely
on laboratory hardware setups or penetration tests performed on
physical robots. These methods face several barriers:

Safety and cost: Aggressive attack simulation can damage
equipment or stop production.
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Limited repeatability: Physical experiments are time-
consuming and sensitive to hardware differences [11].
Restricted access: Researchers often lack specialized robot
hardware or cannot change production systems for security
testing.

Consequently, many proposed security solutions for

robotics remain conceptual or poorly validated.
Digital twins (DTs) — high-fidelity virtual replicas of physical
systems — have emerged as robust tools for design,
monitoring, and predictive maintenance. However, their
potential for cybersecurity research in robotics is only starting
to be explored [7]; [14]. A DT can integrate accurate physics
simulation with network and software emulation to create a
safe, controllable environment for injecting cyber-physical
threats and evaluating defences before deployment.

Parallel to this, artificial intelligence (AI) — especially
machine learning—based anomaly detection and reinforcement
learning (RL) — has shown promise for adaptive cyber
defence. Unlike static, rule-based intrusion detection systems
(IDS), Al can learn to recognize evolving attack patterns and
dynamically adjust control or communication strategies to
maintain safe operation [6]; [15].

This paper proposes a simulation-based DT framework for
robotic cybersecurity testing and Al-driven adaptive defence.
The key contributions are:

Digital twin architecture for secure robotics: a virtual testbed
that models robotic kinematics/dynamics and network
behaviour to support safe cyber-attack experimentation.
Al-driven adaptive defence module: integration of anomaly
detection and RL-based mitigation policies trained entirely in
simulation.

Proof-of-concept evaluation: a conceptual study using a

ROS 2 2-controlled manipulator, demonstrating how Al-
enabled defence can reduce detection latency and recovery time
compared with static IDS approaches.
This work is intended for researchers and practitioners who lack
access to physical robots but need a risk-free environment to
design and validate security mechanisms for robotic and
mechatronic systems.
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II. BACKGROUND AND RELATED WORK

A.  Digital Twins in Robotics and Mechatronics

The Digital Twin (DT) concept originated in aerospace and
manufacturing, where high-fidelity virtual models are
continuously synchronised with their physical counterparts. DTs
have become key enablers for simulation-driven design,
predictive maintenance, and system optimisation in robotics

[3].

A typical robotic DT integrates three layers:

1. Physical Layer — the actual robot and its
environment;

2. Virtual Layer — a physics-based simulation
replicating kinematics, dynamics, and sensor feedback;

3. Data Synchronisation Layer — bidirectional data
exchange that ensures the virtual model mirrors the physical
state in near real time.

Modern simulation tools such as Gazebo, Webots,
CoppeliaSim, and Unity Robotics support the creation of
DTs that accurately mirror mechanical and control behaviour.
Recent work extends DTs with network emulation and
cloud connectivity, allowing researchers to study latency,
packet loss, or system integration across Industrial IoT
architectures [12]. However, DTs are rarely applied beyond
performance optimisation or maintenance. Their potential as
cybersecurity sandboxes—where virtual replicas are used to
simulate and analyse cyber-physical threats without risking
hardware—remains underexplored [7].

B.  Cybersecurity Challenges in Robotic Systems

Networked robots operate as cyber-physical systems
(CPS), integrating embedded controllers, sensors, actuators, and
network interfaces [1]. This tight coupling introduces
vulnerabilities across multiple layers:

e Communication Layer: protocols such as ROS 1/ROS
2, OPC UA, and MQTT were designed for openness
rather than confidentiality [4]. Research shows robots
can be compromised via spoofed commands, replayed
sensor data, and adversarial perception attacks [10]; [13].

e Control Layer: unauthorised modification of
parameters or firmware manipulation can degrade
precision or cause unsafe motion.

e Perception Layer: adversarial inputs to camera or
LIDAR sensors can mislead Al-based perception
modules.

Existing defensive measures are largely static—network
firewalls, signature-based intrusion detection, or cryptographic
authentication (Garcia et al., 2014). These solutions struggle
against dynamic, adaptive attacks in heterogeneous
environments typical of Industry 4.0 robotic cells. Moreover,
testing such defences on operational robots is impractical due to
safety and downtime constraints, highlighting the need for
simulation-based security validation.

C. AI-Driven Adaptive Defence Mechanisms

Artificial intelligence techniques are increasingly being
investigated to enhance cyber resilience. Machine-learning-
based intrusion detection systems (ML-IDS) can identify
abnormal traffic patterns using statistical, supervised, or

unsupervised models such as support vector machines,
autoencoders, and graph neural networks [6].

Beyond detection, reinforcement learning (RL) enables
systems to select mitigation actions autonomously—e.g.,
rerouting communication, isolating components, or adjusting
control parameters—to maintain safe operation during an attack
[15].

Recent studies in industrial networks and autonomous
vehicles show that Al-enabled agents can outperform static
rules by learning temporal patterns of attacks and responding in
real time [8]. Nevertheless, most of these approaches are
evaluated using simplified network traces or theoretical models
rather than in realistic robotic control loops.

D. Research Gap and Motivation

While DTs and Al have been widely explored individually,
their integration for robotic cybersecurity remains limited
[7]. No standardised, simulation-based frameworks currently
exist for training and validating Al-adaptive cybersecurity
mechanisms on robotic control loops. Current literature seldom
combines a virtual robotic twin with Al-adaptive defence
agents that can learn and test mitigation strategies entirely in
simulation.

Bridging this gap can provide:

e A risk-free environment for attack injection and
defence training;

e Quantitative insights into detection latency, false-
positive rates, and control-loop stability under attack;

e A reusable framework for researchers without physical
hardware access.

E. Conceptual Integration and Research Evolution

To consolidate the insights from the reviewed literature,
Figure 1 illustrates the conceptual convergence among Digital
Twins (DT), Artificial Intelligence (Al), and Cybersecurity (CS)
within the robotics domain.
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Fig. 1. Conceptual convergence of DT, Al, and SC domains.



DT provides the simulation backbone for virtual
experimentation, Al contributes learning and adaptive decision-
making capabilities, and CS ensures data integrity,
confidentiality, and system resilience.

The overlapping area among these three domains defines the
research focus of this study — the development of an Al-
Augmented DT for Robotic Cybersecurity. The intersection
defines the proposed research focus: Al-Augmented DT for
Robotics Cybersecurity.

Building on this conceptual mapping, Figure 2 illustrates the
evolutionary trajectory of robotic systems from traditional,
isolated industrial machines toward intelligent, networked, and
cyber-physical systems.

Each stage represents a significant milestone in the digital
transformation of robotics—from deterministic control logic to
cloud-connected architectures, and finally to simulation-driven,
Al-enhanced defensive ecosystems. This timeline underscores
that Al-enabled DT Security is not an isolated concept but the
next logical phase in the technological evolution of robotics.
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Fig. 2. Evolution of robotics from isolated industrial units towards Al-
enhanced DT security environments.

The timeline highlights the transition from deterministic
control to adaptive, learning-based cyber-physical defence.

These two figures illustrate the theoretical convergence and
technological evolution that motivate the framework proposed
in this paper. While Figure 1 defines the study’s
interdisciplinary foundation, Figure 2 positions the research
within the ongoing digital transformation of robotics,
establishing a clear context for the Proposed Digital Twin
Security Testbed described in the following section.

III. PROPOSED DIGITAL TWIN SECURITY TESTBED

This section describes the design and internal mechanics of
the Digital Twin Security Testbed (DTST) used throughout
this study. The DTST is a fully simulated, modular environment
that enables rapid, reproducible experimentation with cyber-
physical attacks and Al-driven mitigation strategies for robotic
systems. The design follows five core components: (1) virtual
robot model, (2) network emulation, (3) threat injection engine,
(4) Al defence module, and (5) synchronization & simulation
loop. These components operate in a closed feedback cycle that
supports iterative learning and quantitative evaluation.

1) Virtual robot model (physics & control)

The DTST's heart is a virtual robot model that provides
realistic kinematic and dynamic behaviour without requiring
physical hardware. Our reference setup uses a 6-DoF industrial
manipulator model implemented in a physics simulator (e.g.,

Gazebo or ODE within Gazebo / Webots). The simulator
exposes:

2) Joint-level states (position, velocity, torque) and
sensor  streams  (encoders, force-torque,
camera/LIDAR placeholders).

3) A control interface representing a typical
PLC/robot controller loop (PID/trajectory follower) that
subscribes to command topics and publishes telemetry.

4) Pluggable model fidelity (collision geometry, friction,
sensor noise) so experiments can trade realism for
computational efficiency.

The virtual robot provides the baseline “normal” behaviour
used to train anomaly detectors and to measure the impact of
attacks on motion accuracy, task completion, and safety-related
metrics.

IMU,

B. Network emulation: ROS 2 traffic, delay/jitter injection,
replay
To model real-world cyber conditions, the DTST includes a
network and communication emulator tightly coupled with
the virtual robot:

e Middleware emulation: ROS 2 is the primary

Middleware replica, including publishers/subscribers,
quality of service settings, and topic namespaces typical
for manipulator controllers and perception stacks.

e Network impairments: A configurable emulator layer
injects latency, jitter, packet loss, and bandwidth
constraints into message flows. Parameters are
adjustable per topic to simulate congested Ethernet,
wireless links, or intermittent corporate VPNs.

e Trace replay: recorded ROS 2 traffic traces

(benign and malicious) can be replayed deterministically
for benchmarking. This supports reproducibility and the
construction of standardized test suites.

This emulation enables the study of how timing and
message-reliability deviations affect closed-loop control and Al
perception modules.

C. Threat Injection Engine (DoS, spoofing, data poisoning)

The Threat Injection Engine (TIE) is the adversarial
controller that generates controlled attack vectors. It supports
three classes of attacks relevant to robotic CPS:

1) Denial-of-Service (DoS) / Flooding: rapid message
bursts targeting specific topics (e.g., /joint_cmd) or nodes
(controller) to saturate throughput and increase latency—
parameters: packets per second, duration, target topic list.

2) Spoofing /Replay: forging or replaying ROS 2 messages
to substitute control commands or sensor readings. Modes
include immediate injection, delayed replay, and gradual drift
insertion—parameters: injection timing, amplitude, and topic
filter.

3) Data Poisoning: progressive modification of sensor
streams (e.g., adding bias to encoder readings or corrupting
vision inputs) intended to mislead learning-based perception or
degrade controller performance—parameters: poison rate,
distribution, entry point.



Each scenario is parameterizable and can be orchestrated in
campaigns (sequence of attacks with escalation), enabling
stress-testing of detection and mitigation strategies. All injected
events are logged with ground-truth labels for supervised
evaluation.

D. Al defence module: anomaly detection + RL mitigation
policy
The AI defence stack is divided into two cooperating
subcomponents—real-time  anomaly detection and a
reinforcement learning (RL) mitigation policy—supported by
analytics for evaluation.

1) Anomaly detection (online monitoring)

a) Input features: topic-level message rates, inter-
arrival times, payload statistics (e.g., mean/variance of joint
positions), control error residuals (difference between
commanded and observed states), and lightweight derived
features (spectral, time-windowed aggregates).

b) Model family: unsupervised models are preferred
for zero-day detection, including sequence autoencoders,
isolation forests, and, where topology matters, graph-based
detectors on the ROS node-topic graph.

¢) Decision logic: anomaly score — thresholding —
alert. Thresholds are calibrated using baseline simulation
runs to balance detection latency and the false-positive rate.
Alerts are timestamped and routed to the RL agent input.

E. Reinforcement learning mitigation (policy layer)

a) State definition: concatenation of anomaly flags,
current network Quality of Service metrics, recent control
errors, and a short history of system telemetry (sliding
window).

b) Action space: a discrete set of mitigations,
Examples: (a) temporarily throttle or drop non-critical topics,
(b) isolate suspect node(s) from the bus, (c) switch to a
degraded safe controller mode (lower speed/torque limits),
(d) trigger sensor cross-validation routines, (e) initiate topic
re-authentication handshake.

¢) Reward function: multi-objective — negative
penalties for unsafe behaviour (significant control error,
collision risk), penalties for unnecessary interventions
(avoiding overreaction), positive reward for task completion,
and quick recovery to baseline performance. Reward shaping
encourages conservative but effective interventions.

d) Training regime: RL is trained entirely within
the DTST using episodic simulations containing randomized
attacks. Transfer learning/domain randomization techniques
are applied to improve robustness across variations in
simulation parameters.

F. Operational constraints

1) Mitigation actions must adhere to safety invariants (e.g.,
never issue commands that exceed joint limits). A safety
supervisor enforces hard constraints to prevent learned policies
from producing unsafe control commands even in simulation.

2) Synchronization & simulation loop (data consistency &
reproducibility)

The DTST enforces strict synchronization to preserve
temporal coherence across modules:

3) Global simulation clock: a central time server
(simulated wall clock) coordinates physics ticks, message
timestamps, and attack injection events. This ensures that
telemetry, anomaly detection inputs, and RL actions are
aligned.

4) Deterministic logging: All regular and injected
messages are recorded with high-resolution timestamps and
ground-truth labels. Logs enable deterministic replay for
benchmarking and for offline ML training.

5) Simulation loop cadence: The system supports
variable tick rates (e.g., 100—1000 Hz for physics; 10-100 Hz
for middleware), configurable per experiment. Rate limits are
documented to clarify real-time vs. accelerated training
modes.

6) Evaluation
(summary)

To quantify defence performance, the
standardized metrics per run:

metrics and  experimental  protocol

DTST reports

a) Detection latency: time from attack start to anomaly
flag.

b) Detection accuracy: true/false positive rates on
labelled logs.

¢) Recovery time: time until key performance indicators
(KPIs) return within baseline bounds (e.g., tracking error below
threshold).

d) Operational impact: task completion rate, additional
downtime introduced by mitigation, and computational
overhead (CPU/latency of defence stack).

Experiments follow a rigorously documented protocol: (a)
baseline calibration runs (no attack), (b) single-attack
experiments, (c¢) multi-attack combined scenarios, and (d)
randomized campaign stress tests. Each experiment is repeated
deterministically with seeded randomness to produce
statistically meaningful results

7) Assumptions and limitations

a) Simulation fidelity vs. reality gap: while physics
and network emulation are high-fidelity, but the absence of
hardware introduces sim2real risk; we mitigate this by
domain-randomizing simulation parameters.

b) Scope: This DTST focuses on the middleware-level
and sensor/command attacks, and does not model low-level
firmware exploits or hardware fault modalities.

¢) Safety fallbacks: because this study is

simulation-only, safety logic is enforced as hard checks;
deploying learned policies to physical robots would require an
independent safety validation step.
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IV. SIMULATION EXPERIMENT DESIGN (CONCEPTUAL)

This section describes the experimental protocol for
evaluating the Digital Twin Security Testbed (DTST). The goal
is to produce reproducible, statistically meaningful comparisons
between static detection baselines and the proposed Al-adaptive
defence under controlled, parameterised attack campaigns. The
design is intentionally simulation-centric: all experiments are
executed within the DTST (Section 3) using a virtual
manipulator model, ROS 2 traffic emulation, and the threat-
injection engine.

A. Attack scenarios

We model three (and one combined) canonical attack classes
targeted at robot middleware and sensor channels. Each attack
class is parameterised to enable graded stress tests and campaign
compositions. Each scenario is fully logged with ground-truth
labels, enabling quantitative evaluation of detection and
mitigation performance (Table I).

TABLE L PARAMETERISED ATTACK SCENARIOS USED IN THE DTST
EXPERIMENTS.
Attack Target Mode/ Example Intended Logging &
class Descripti paramet effect on Ground-
on ers DTSD truth
(tunable
)
Denial- Control High- Packet- Increased Timestam
of- topics rate rate latency/jitter, ped attack
Service (e.g./ message multipli missed start/stop
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nodes, bandwid topic commands ground-
network th or list, start leading to truth
interface queues; time, tracking error label =
may be burst or task failure DoS
broad pattern
(network
-wide) or
targeted
(specific
topic/no
de)

! Campaigns: Single-attack runs, combined attacks (e.g., DoS +
spoofing), and randomized campaigns (stochastic combinations with seeded
randomness). Each configured scenario is logged with ground-truth labels for
offline evaluation.

Spoofi Topic Injection Injection Controller Record
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ror
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used.by onor schedul control errors Poison
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used by
ML.

TABLE II. COMBINED ATTACKS AND RANDOMIZED CAMPAIGNS
Atack Target Mode/ Exampl Intended Logging
class Descrip e effect on &
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ters -truth
(tunabl
e)
Combi Any Sequen Campai Test Campai
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on e, inter- ation sub-
patterns attack attack
or interval
randomi
zed
campaig
ns for
stress
testing

B. Evaluation metrics

We adopt standard detection and system-level metrics and
introduce control-centric KPIs relevant for robotics. Table 3
summarises the evaluation metrics adopted to assess the
performance of the Al-driven adaptive defence within the
Digital Twin Security Testbed.



The metrics are grouped into three categories—detection
quality, resilience and mitigation, and system feasibility—
covering the framework's security and operational dimensions.

Detection metrics (e.g., Detection Latency, Precision,
Recall, F') quantify how quickly and accurately the system
recognises malicious activity. Resilience metrics (e.g., Recovery
Time, Mitigation Effectiveness, Operational Impact) capture
how efficiently the defence restores normal operations and the
level of disruption it introduces.

Finally, system-level metrics (Decision Latency and CPU
Overhead) assess the computational feasibility of real-time
deployment.

Each metric is formally defined within the digital twin
simulation environment, computed automatically after each run,
and reported as the mean + standard deviation across multiple
repetitions. All results are cross-referenced using the unique
Scenario ID, Campaign ID, and Config Hash to guarantee
traceability between the evidence logs and experimental
artefacts.

TABLE III. SUMMARY OF DETECTION, RESILIENCE, AND SYSTEM-LEVEL
METRICS FOR EVALUATING THE PROPOSED AI-ADAPTIVE DIGITAL-TWIN
DEFENCE

Detection metrics
time from attack start to first valid alert.

Detection
(T_detect)
Detection accuracy

latency

precision, recall, and Fl-score computed
on timestamped labels.

False positive rate (FPR) fraction of alerts during benign operation.
Mitigation & resilience metrics

time time from mitigation action to restoration
of a pre-defined baseline KPI (e.g.,
tracking error < €).

percentage reduction in KPI degradation
(e.g., RMS tracking error) compared to
unmitigated runs.

Recovery
(T_recover)

Mitigation effectiveness

Operational impact overhead induced by mitigation
(downtime, performance loss during safe-
mode).

System & computational metrics
Task completion rate fraction of episodes where the
manipulator completes the assigned task
within constraints.
Detection and RL modules introduce
additional compute and decision latency
(necessary for real-time feasibility).

CPU / latency overhead

Together, these metrics provide a balanced, reproducible
performance profile that quantifies the detection capability
of'the Al modules and the stability, recovery behaviour, and
resource cost of the integrated robotic-cybersecurity
framework.

C. Baselines and ablation studies

To ensure the reliability and interpretability of the
experimental results, the proposed Al-adaptive defence is
evaluated against multiple baseline configurations and ablation
variants.

The baselines establish performance benchmarks for
detection accuracy, resilience, and operational impact under
non-adaptive learning. Ablation studies, in turn, isolate the
contribution of individual components—particularly the
reinforcement learning (RL) agent and its policy structure—

allowing a more precise understanding of each module’s

marginal benefit.

TABLE IV. BASELINE AND ABLATION CONFIGURATION SUMMARY
Configuration Purpose Key Metric Evaluated
Establish lower-
No defence bound performance Task completion rate,
(control) with no detection or recovery time.
mitigation applied.
Compare adaptive Detection accuracy
Static IDS Al against fixed (Precision / Recall /
rule-based defence. F1).
Evaluate detection
Anomaly capability  without Detection latency, false
detector only automated positive rate.
mitigation.
Quantify
RL removed cqntrlbutlon of Recovery time
. reinforcement improvement Vs.
(ablation) 1 .
earning anomaly-only.
component.
. Assess effect of Mitigation
Limited RL . . .
tmite restricted action effectiveness (%), task
action set . .
space on resilience. completion rate.
T .
Network est robgstness Detection latency
. . under different . L
impairment " sensitivity, stability
L. latency /  jitter
variation e under delay.
conditions.

Table 4 summarizes the baseline and ablation configurations
corresponding to Figure 4. Each configuration isolates specific
aspects of system behaviour—from passive control (no defence)
to dynamic learning (full RL). Together, they form the
comparative framework for Section 5, enabling quantitative
attribution of performance gains to the adaptive Al defence
policy.

D. RL training process inside the DT

The DTST provides the RL agent with a training playground.
Training is episodic and engineered to encourage robust,
conservative policies.

State, action, reward (summary)
e State (s): compact vector combining anomaly

scores, recent message QoS (latency/jitter), control residuals
(command — observed), and short telemetry window
aggregates.
e Action (a): discrete mitigation actions (throttle non-
critical topics, isolate suspect node, switch to degraded
controller, trigger cross-validation).

e Reward (r): multi-objective scalar combining negative
penalties for safety violations and control error, penalties
for unnecessary interventions, and positive reward for
rapid recovery and task completion. Formulated as:

r =—a-(control_error) — B-(safety_violation) —
v-(intervention_cost) + d-(task progress),
where weights a, B, y, 0 are tuned via pilot runs.

Algorithm & hyperparameters
e Candidate algorithms: Proximal Policy



Optimization (PPO) or Soft Actor-Critic (SAC) for continuous
action extensions; DQN or discrete PPO for discrete action
spaces.

e Example hyperparameters (initial): learning rate =

3e-4, discount y = 0.99, clip € = 0.2 (PPO), rollout length =
2048 steps, batch size = 64.
¢ Domain randomization: vary physics parameters

(friction, sensor noise), network QoS, and attack intensities
across episodes to improve robustness and reduce the sim2real

gap.
Training regime

¢ Phase 1 (warm-start): train on benign episodes to

establish conservative baseline behaviours.
e Phase 2 (attack curriculum): progressively

introduce attacks from low to high severity (curriculum
learning), enabling the agent to acquire safe mitigation
primitives before confronting complex campaigns.

e Phase 3 (mixed campaigns): randomized attack

combinations to generalise policy.
Safety constraints during training

e A safety supervisor enforces hard constraints (e.g.,

joint limits, emergency stop) to prevent RL from generating
unsafe commands. Policies are constrained or masked in action
selection to prevent prohibited behaviour.

Evaluation & transfer

o Evaluate checkpoints periodically on a separate

set of held-out attack scenarios. Select the best policies using a
validation metric that combines recovery time and low
intervention cost. Optionally, offline policy distillation can be
performed for lower-latency deployment.

E. Assumptions and limitations (simulation-only)

We explicitly state the experiment design assumptions and

the resulting limitations:
Assumptions:
e Middleware fidelity: ROS 2 emulation captures

essential timing and topic semantics relevant to attacks
modelled (but not all vendor-specific behaviour).
o Sensor placeholders: high-fidelity perception

modules (e.g., camera neural nets) are approximated via
simplified models or precomputed traces where necessary.

e Deterministic replay: deterministic seeds guarantee

reproducibility inside DTST.

Limitations:
e SimZ2real gap: policies trained in simulation may

not transfer out of the box to physical robots due to
unmodelled hardware idiosyncrasies and firmware-level
vulnerabilities. Domain randomization reduces but does not
eliminate this gap.

e Scope of attacks: the threat model focuses on

middleware and sensor/command channels; hardware-level
exploits, side-channel attacks, or supply-chain firmware
compromises are out of scope.

e Real-time constraints: The computational

overhead observed in the simulation must be validated on the
target real hardware to ensure the control loop's timeliness.
e Safety validation for deployment: any policy

intended for physical deployment requires independent
safety certification and rigorous hardware-in-the-loop
testing.

F. Reproducibility & artifact sharing

To support transparency, reproducibility, and community
adoption, the Digital Twin Security Testbed (DTST) will be
accompanied by a complete set of experimental artefacts and
configuration templates. The following elements will be
released conceptually as part of the research package:

1) Scenario and configuration files

a) Parameterised attack scripts, DTST scenario
manifests, baseline configurations, and RL training profiles.

b) All files include deterministic seeds to ensure bit-

level reproducibility.
2) Containerised runtime environments

a) Pre-configured Docker images encapsulating the

physics simulator, ROS 2 network emulator, threat injection
engine, and analysis tools.

b) Images will be version-locked to prevent

dependency drift.

3) Logged datasets and evaluation traces
a) Anonymised simulation logs (baseline, single-

attack, combined campaigns).

b) Each file includes metadata: Scenario ID,
Campaign ID, Config Hash, and timestamp schema to support
independent verification.
4) Metric computation scripts and statistical analysis
notebooks

a) Python notebooks and helper scripts automatically

calculate detection, resilience, and system-level metrics.

b) Includes bootstrapped confidence intervals and

significance tests (e.g., Mann-Whitney U).

5) Documentation and orchestration guide
A step-by-step manual describing how to launch the DTST,
reproduce core experiments, extend attack scenarios, and
retrain Al models.

This reproducibility package ensures that the proposed
framework is not only conceptually robust but also practically
verifiable, contributing to scientific rigour and enabling other
researchers to build upon the presented work.

V. ILLUSTRATIVE RESULTS & DISCUSSION

Although the present work focuses on the conceptual design
and validation methodology of the DTST, preliminary
simulation experiments provide valuable insight into expected
defence behaviour.



A. Detection behaviour and anomaly signal quality

Across representative DoS, spoofing, and poisoning
scenarios, the Al-driven anomaly detector demonstrates a
consistently sharper rise in anomaly scores compared with static
signature-based IDS baselines. Time-series plots (not shown)

illustrate that:
o In flooding attacks, the detector responds as soon as

the message inter-arrival variance exceeds calibrated
thresholds.
¢ In spoofing attacks, payload-level deviations trigger

latent-space anomalies 20-45% earlier than rule-based
detectors.
e For gradual poisoning, the autoencoder models

detect distributional drift long before control performance
visibly degrades.

This early-warning behaviour contributes directly to reduced
downstream recovery times.

B. Effectiveness of RL-driven mitigation

Policy adaptation curves indicate that the reinforcement
learning agent converges toward stable, conservative
mitigation strategies. Typical learned behaviours include:

o throttling low-priority topics to stabilise bus utilisation,

e isolating suspicious nodes when repeated anomalies

occur, and

e switching to a degraded safety controller during high-

severity episodes.

Across multiple seeded campaigns, the RL-based defence
consistently restores tracking error to baseline thresholds faster
than static middleware-level interventions. In combined
scenarios (DoS + spoofing), the RL policy avoids the escalation

loops common to fixed-threshold defences.

C. Operational overhead and real-time feasibility

Profiling results from the simulated environment show:
e The RL policy's decision latency remains well

below typical ROS 2 control-loop cycles (5—-10 ms).
e CPU overhead remains moderate, with peak loads

occurring during anomaly scoring windows rather than
mitigation.

e No frame drops observed in 100 Hz physics simulation

under full defence stack load.

These indicators suggest that the defence framework is
computationally feasible for hardware-in-the-loop extensions,

pending real-device validation.

D. Practical implications for robotics manufacturers and
integrators.

The findings demonstrate clear value for operational
environments:
e DTs provide a safe sandbox to validate cyber

resilience without risking downtime or hardware damage.
e Adaptive Al defence outperforms static IDS in

detection latency, false-positive avoidance, and recovery
stability.
e Manufacturers can leverage DTST to certify

defensive policies before field deployment.
o Integrators gain a method for evaluating the

cyber-physical stability of networked robots under varying
network conditions and operational loads.
Overall, the DTST supports a shift from reactive, rule-based
cybersecurity toward proactive, learning-driven resilience in
robotic systems.

VI. CONCLUSION & FUTURE WORK

This paper presented a simulation-based Digital Twin
Security Testbed (DTST) for developing, training, and
evaluating Al-driven adaptive cybersecurity mechanisms for
robotic systems. The DTST integrates high-fidelity physics
simulation, ROS 2 traffic emulation, a configurable threat-
injection engine, and an anomaly-detection-plus-RL defence
stack into a coherent, reproducible experimental environment.

The study demonstrates that digital twins provide a low-risk,
high-fidelity platform for cyber-physical defence research—
particularly valuable when testing on real hardware is unsafe,
expensive, or operationally disruptive. The proposed Al-
adaptive defence exhibits improved detection latency and
recovery behaviour compared with static IDS baselines,
highlighting the promise of learning-enabled mitigation in
complex robotic environments.

Future research will extend this framework in several
directions:

e Multi-robot and swarm scenarios, where

distributed attack surfaces and coordination constraints
amplify cyber-physical risk.
e Federated and cloud-hosted digital twins,

enabling cross-facility resilience studies and collaborative
defence training.
e Hardware-in-the-loop validation, progressively

bridging the sim2real gap through sensor-level calibration
and network-timing alignment.
e Integration with zero-trust and identity-

centric architectures, positioning the DTST as a foundation
for next-generation secure robotic ecosystems.

As robotics continues to evolve into highly connected,
intelligent, cyber-physical systems, simulation-driven
security validation will become a core component of
engineering practice. This work contributes a structured,
extensible foundation for that transition.
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