
International Conference
AUTOMATICS AND INFORMATICS’2016

4-5 October 2016, Sofia, Bulgaria

JOHN ATANASOFF SOCIETY
OF AUTOMATICS AND INFORMATICS

FINGERS AND GESTURE RECOGNITION WITH KINECT V2 SENSOR

A. Lekova1, D. Ryan2, R. Davidrajuh2

1Institute of Systems Engineering and Robotics, Bulgarian Academy of Sciences, Sofia 1113, Acad G.
Bonchev str., bl.2, tel. +3599793232, e-mail: alekova@ifi.uio.no
2University of Stavanger, Norway. e-mail: daniel.ryan@outlook.com; e-mail: reggie.davidrajuh@uis.no

Abstract: The paper presents enhancements and innovative solutions of the proposed in [3] algorithms for fingers tracking and finger
gesture recognition based on new defined features and new-tracked tip and thumb joints with Kinect V2 sensor. Dynamic Time Warping
(DTW) algorithm is used for finger gestures recognition. We increased its accuracy and scale and rotational invariance defining new fea-
turing angles calculated from the extracted 3D positions for fingertips and Kinect thumb and tip joints. These features are used for train-
ing the gesture DB. A comparison with the latest published approach for finger tracking has been performed. The feasibility of algorithms
have been proven by real experiments.

Key words: Fingers detection, Finger Gesture Recognition, DTW, Contour extraction, Curve detection, Microsoft Kinect V2.

INTRODUCTION

In the context of learning new skills by imitation for children
with special educational needs in the project [1], we designed a
playful environment where a Microsoft Kinect sensor [2] and
robotic systems are assistants of the therapist and mediate the
process of interfacing objects on digital screens by gestures or
navigate fingers of a doll equipped with an artificial robotic
hand. The Kinect sensor is a cheap and wildly spread sensor
with valuable features, such as a depth sensor and full body
joints tracking. However, the Kinect SDK does not support
finger tracking. Therefore, we have created algorithms to de-
tect hand and 3D finger positions from depth sensor data. With
them we use Dynamic Time Warping (DTW) to recognize fin-
ger gestures.

Existing Solutions. A lot of work has been studied for finger
recognition by external observations for extracting 3D poses
from an image sequence. Typically, Kinect sensor is used for
motion-sensing, fingers and gestures recognition [5, 6, 7]. The
common used steps are: (1) depth thresholding; (2) contour ex-
traction; (3) curves detection; (4) fingertips detection; (5) ges-
ture recognition. The methods for gesture recognition could
be: DTW algorithms for measuring similarity between two
temporal sequences which may vary in speed; a simple rule
classifier on sequence of hand poses where gesture is predicted
according to the number and content of fingers detected;
online fuzzy clustering of the poses over time; simple Hidden
Markov Model for classifying of poses and their temporal de-
pendence. The latest one approach for finger detection using
the new version V2 of Kinect sensor is presented in [5]. Au-
thor detects human hands in the 3D and 2D space defining
several thresholds for depth: width, height, max, min, etc.,
based on DepthFrame and BodyFrame data. He searches for a
hand by calculating a distance between tip, thumb and hand
coordinates, as well as angles between wrist and hand joints.
The algorithm in [5] starts by detecting the Hand joints and the
HandStates of a given Body. Thus, the algorithm knows
whether it makes sense to search for fingers. The search area is
specified by Hand joints positions within a reasonable distance
(3D area that is limited between the Hand and the Tip joints,
10-15 cm, approximately). In order to find the contour, any
depth values that do not fall between the desired range are ex-
cluded and thus all depth value that does not belong to a hand
is rejected. The outline is the contour of a hand - a big set of

points. In order to detect a finger, a “convex hull” in Euclidian
space is tried to find. The fingertips are edges of a polyline of
the convex hull above the wrist and vertices of convex hull are
fingertips if their interior angle is small enough. We imple-
mented the APIs proposed in [5] and found some shortcomings
of the algorithm accuracy and speed. Detailed comparison is
performed in the last Section. To the best of our knowledge we
first use the tip and thumb hand joints to define the minimum
and maximum distances where the hand is located, as it can be
seen from interim reports in 2015 for the project referenced as
[1].

The paper presents enhancements and innovative solutions of
the proposed in [3] algorithms for Fingers Detection and finger
Gesture Recognition (FDGR). The APIs for old version of Mi-
crosoft Kinect V1 sensor used in [4] has been migrated to Ki-
nect V2. The enhancements in the Dynamic Time Warping al-
gorithm are based on the new-tracked with Kinect V2 tip and
thumb joints, as well as rotational and scale invariance of the
algorithms achieved by 3D angles rather than 2D positions of
fingers as gesture features. Angles, featuring a gesture are cal-
culated based on 3D position extracted for a fingertip, Kinect
hand and thumb joint. These features are used for training the
gesture DB. Thus, we improve the speed and accuracy of fin-
ger tracking and gesture recognition.

ENHANCEMENTS AND INNOVATIVE SOLUTIONS

The FDGR algorithms, as well as how finger gestures are
streaming and recorded with Microsoft Kinect V1 are de-
scribed in [3]. The APIs [4], presented in Figure 1, were cre-
ated with focus on ease of use and the possibility to customize
and change core algorithms. Kinect-enabled application han-
dles the sensor raw depth data and calculates finger positions
and their features over time to recognized gestures using
DTW. The identified gesture navigates objects on screens or is
used to control the artificial hand motors via Bluetooth con-
nection in real time. With the emerging of Kinect V2 and
SDK2 we designed and implemented the enhancements bel-
low. Kinect recognizes Human body and populates pixel of
depth stream with player index. We do not need the class

107

RangeFinder, since the range is defined in the main class ac-
cording to BodyFrame data stream for hand joints.

Contour tracking. Own contour tracking algorithm is used in
[3]. It finds the contour of objects in range of the depth cam-
era. This algorithm works by scanning the depth image from
the bottom and up for a valid (belongs to hand) contour pixel.
When a valid contour pixel is found it will begin to track the
contour of the object that the pixel is a part of. This is done by
searching in a local grid around the pixel. After the contour
tracking algorithm has terminated, the tracking it returns is an
ordered list with the positions of the contour pixels.
Enhancements: The depth detection is performed on Z coordi-
nates of both hand joints. We exploit depth value Z in all vec-
tors containing pixelPosition during the scanning from left,
right, traversing horizontally, etc. Modified parameters are:
MaxPixelsToBacktrack=25; NumberOfRowsToSkip=2; when
scanning for the initial pixel. MaxEdgePixelCount=700; min-
imum 700 pixels in order to find all the fingers. We didn’t use
heightOffset because we use the whole camera space.

Figure 1. The structure of APIs in [3]

Finger Recognition: Finger recognition consists of three steps.
Step one is to find curves on the hand contour. Step two is to
find which curves are fingertips and the last step is to find the
middle of the fingertip curves. In addition we also get the
pointing direction of the fingertips. Figure 2 shows the results
of these algorithms. The red pixels are the extracted hand con-
tour, the yellow pixels are the curve points and the blue pixels
indicate where the fingertips are located.

Figure 2. The results of finger detection algorithms

Curve tracking: The curve detection is implemented using the
k-curvature algorithm. The k-curvature algorithm detects the
angle between two vectors. Enhancements: The 'k' constant
specifies how many pixels to travel from the origin point to a
new pixel in order to create a line segment. This value depends
on the application and has been found by trial and error. We
established k=20. If k=10 more than five fingers could be

found. The min and max angles in the curvature algorithm also
depends on the application. We set MaxAngle=55º and
MinAngle = 30 º.

Tracking Fingertips: We iterate through the curve point list
trying to find curve point segments. Curve point segments con-
sists of points that are next to each other. When the start and
end point of a curve segment is found we find the middle point
of the segment. This is the fingertip location. However, not all
segments are fingertips, they can also be finger valleys. To
find if the segment is a fingertip, we create a bisect between
vectors A and B (see Figure 2). If the bisect points to a pixel
that is in the specified depth range we know that it must be a
fingertip otherwise it is a finger valley. Enhancements of con-
stants:
verticalPixelDistanceThreshold=7; horizontalPixelDis-
tanceThreshold=7.

Gesture Recognition: To recognize gestures, we implemented
a variant of the DTW algorithm, more details about it can be
found in [3]. It recognizes similarities between two time series
according to its features. The two time series do not need to be
synchronized in time, enabling a user to do gestures slower or
faster than the recorded gesture speed. DTW works in two
passes – first a gesture candidate is searched from the last
frame in the gesture stream according to its distance cost
(equation 1). Then the accumulated DTW matrix cost is cal-
culated between gesture candidate and recorded gestures in the
DB. DTW matrix calculations consist of several steps after
finding the candidate gesture in the database. The two ges-
tures, a pre-recorded gesture (reference gesture) and the newly
performed gesture (input gesture) are compared. First, the cost
between each reference and input frames is calculated. This is
visualized by using a matrix (see Figure 3), where m is the
number of frames for which the gesture stream is recorded,
while n is the number of frames for the observed (input)
stream. Calculating Euclidean distance cost d(p,q) per frame is
by equation (1) while calculating total Euclidean distance is by
equation (2). The cost between each reference and input
frames (ccost) is visualized by using a matrix, see figure 3a. We
assume only one hand is used for gestures, although gestures
with multiple hands are also possible to be recognized with our
solution. After the matrix is filled with the costs, we compute
the lowest accumulated cost matrix. In this matrix we compute
the lowest cost to reach a cell. There are three different ways
to reach a cell - from the left, bottom or the diagonal down
cell. In Figure 3 b. it can be seen that c can only be reached by
cell 1, 2 and 3. The accumulated cost for these three cells must
be calculated before. If c is the cell we want to calculate and its
accumulated cost is cac, c’ in equation (3) is one of the three
cells that can reach c. The lowest of the three cac is chosen as
the final value for c.

d(p,q) = SQRT((px − qx)2 + (py − qy)2 + (pz − qz)2) (1)
where p and q denotes a finger position in a reference gesture
frame and in a input gesture frame.

 d(p,q)_total = SUM(d(pi, qi)) ; 1 ≤ i ≤ 5 (2)

 (3)

The last step is to find the lowest accumulated cost path from
the last cell ([m,n]) to the first cell ([0,0]). Beginning from the
last cell, we always choose the cheapest cell of the three we
can choose from (left, down and the diagonal down cell) as the
next cell. The accumulated cost for each cell in the path is
added together to be the total path cost.

108

DTW Gesture Recognizer enhancements: During the both
passes in the algorithm we use two type of feature angles: the
first one is calculated based on the new-tracked with Kinect
V2 3D tip, hand and thumb joints. The second type is list of
featuring angles for fingers, calculated based on 3D position
extracted for fingertips, Kinect hand and thumb joints. These
features are used for training the DB (Figure 6). During the
training the gesture stream consists of 42 frames. During the
recognition the observed gesture consists of 25 frames. There-
fore, each 25th frame starts new gesture recognition. Parame-
ters set:

FrameDistanceThreshold=100; VerticalMovementThreshold =10;
HorizontalMovementThreshold=10; pathCostThreshold = 50; max-
StoredFrames =42; maxAccumulatedFrames =25

a) b)

Figure 3. Hand frame matrix

IMPLEMENTATION AND EVALUATION

Technical Specification. Kinect V2 sensor is connected to a
laptop with Intel(R) Core (TM) i7-5500U CPU@ 2.40 GHz
and transfers sensor data to a software application running on
the same laptop, built in C++, referencing Microsoft Kinect li-
brary (SDK 2) and performing data pre-processing and FDGR
algorithms. Kinect SDK middleware could be directly con-
nected to a computer application, such as digital game or two
middleware could be connected: Kinect SDK, on the Kinect
side and Maestro Scripting Language for Maestro USB Servo
Controller on the robotic hand side.

The code running on the robot side is waiting to receive the da-
ta from Kinect side via Bluetooth and use it to make the move
of the hand motors.

a) Solving puzzle by gestures

b) Robotic hand for imitation of counting gestures

Figure 4. Real experiments with children

The enhanced FDGR algorithms have been implemented and
tested in two different type of applications: a computer game
for solving puzzle by gestures (Figure 4.a) and robotic hand
for imitation of counting gestures (Figure 4.b) .

Hand and gesture structure: In each frame, we have processed
the depth frame and found the finger positions in the frame. A
fingertip is described by a list of vectors Vector(double x, double y,
double z). A hand is described by two structures (Figure 5) – for
3D positions of fingertips and 3D angles. A gesture is a list of
hands for each even frame up to 42 (or 25) frames. The gesture
DB is in XML format, which tags hand poses per frame in the
gesture stream for different type of gestures. The used gestures
are seven, for each gesture we recorded about 8 to 20 exam-
ples. The format per frame could be seen in Figure 6. Even
with the declared few training examples the FDGR works well
if you move a little bit the finger(s) in case. More records in
the DB improve accuracy, however the time for recognition
increase.

public sealed class Fingertip {
public Vector Position { get; set; }
public Vector Direction { get; set; }
public Vector Bisect { get; set; }
 }

public sealed class Feature {
 public Vector Angles { get; set; }
 public Vector K2angle { get; set; }
 public int frameK { get; set; }
}

Figure 5. Hand structures

We implemented the APIs proposed in [5]. The finger tips are
detected in the classes: HandsController and DepthPointEx
based on distances and angles between points in hand contour.
We found out that when fingers in a gesture are one, two or
three, the algorithm doesn’t show the point for the fingertip
(see Figure 7 d) e). When the hand is very close to the body
some errors in the contour have been detected (see Figure 7 b)
c). The speed of detection per frame could be significantly
improved if the camera.Source = frame.ToBitmap() is not vis-
ualized.

<Hand>
 <Features>
 <Fingertip3>
 <Angles>
 <X>0.16882305862400515</X>
 <Y>62.1243642290616</Y>
 <Z>769</Z>
 </Angles>
 </Fingertip3>
 <Fingertip3>
 <Angles>
 <X>0.14652809987080839</X>
 <Y>64.292301491964508</Y>
 <Z>759</Z>
 </Angles>
 </Fingertip3>
 <Fingertip3>
 <Angles>
 <X>0.13601450968839465</X>
 <Y>59.357403917683612</Y>
 <Z>762</Z>
 </Angles>
 </Fingertip3>

 <Fingertip3>
 <Angles>
 <X>0.12503074646456028</X>
 <Y>58.679970878013414</Y>
 <Z>764</Z>
 </Angles>
 </Fingertip3>
 <Fingertip3>
 <Angles>
 <X>0.10749157196714702</X>
 <Y>45.298737056613291</Y>
 <Z>780</Z>
 </Angles>
 </Fingertip3>
 <Kinect2angle>
 <X>0.13438510568547066</X>
 <Y>47.985678517288036</Y>
 <Z>814.2622709274292</Z>
 </Kinect2angle>
 <frameK>30</ frameK >
 </Features>
 </Hand>

109

 a)

 b)

c) d) e)

Figure 7. Shortcomings of the algorithm accuracy in [5]

In order to prove that the proposed here algorithms are more
accurate, we present on Figure 8 the right contour and finger-
tips detection and recognition of two counting gestures “one”
(where only one finger participates) and “five”. The more so-
phisticated algorithms for curves and fingertips detection we
use don’t penalize the system performance. The feasibility of
the proposed algorithms operating in real time has been proven
by videos in [1], Section Results> Games for motor and cog-
nitive rehabilitation>Puzzle and Minion Games. One of the
problems we faced was that the hand of the therapist (very of-
ten stands close to the child) adds more contour points for the
hand. In the future, we will provide a solution for filtering the
hand of the child based on ID for the first tracked person.

 a) Counting gestures “one” b) counting gestures “one”

Figure 8.

CONCLUSION

The proposed enhanced and innovative algorithms for fingers
detection and gesture recognition have been implemented and
tested in two different type of applications. Their feasibility
and usability have been proven by real experiments with re-
quired accuracy and real time response.

 ACKNOWLEDGMENTS

This research is supported by the EEA grants, BG09 N D03-
90/27.05.2015, Measure “Projects for Interinstitutional Coop-
eration”.

REFERENCES

1. http://iser.bas.bg/METEMSS/en/

2. http://www.microsoft.com/en-us/kinectforwindows

3. Rayan D. Finger and gesture recognition with Microsoft Ki-
nect, https://brage.bibsys.no/xmlui/handle/11250/181783.
MSc. thesis, 2012.

p.203-208

4. https://kinectlibrary.codeplex.com/

5.http://pterneas.com/2016/01/24/kinect-finger-tracking/, 2016

6. Stein M. Finger Tracker, 2012. http://makematics.com/code
/FingerTracker/

7. Tang M “Hand Gesture Recognition Using Microsoft’s Ki-
nect.” Paper written for CS229, March 16, 2011.

110

http://www.microsoft.com/en-us/kinectforwindows
https://brage.bibsys.no/xmlui/handle/11250/181783
https://kinectlibrary.codeplex.com/
http://pterneas.com/2016/01/24/kinect-finger-tracking/
http://makematics.com/code%20/FingerTracker/
http://makematics.com/code%20/FingerTracker/

