
International Conference
AUTOMATICS AND INFORMATICS’2016

4-5 October 2016, Sofia, Bulgaria

JOHN ATANASOFF SOCIETY
OF AUTOMATICS AND INFORMATICS 

WIRELESS KINECT-NAO FRAMEWORK BASED ON TAKAGI-SUGENO
FUZZY INFERENCE SYSTEM

A. Lekova, A. Krastev, I. Chavdarov

Institute of Systems Engineering and Robotics, Bulgarian Academy of Sciences, Sofia, “Acad G.
Bonchev” str., bl.2, tel. +3599793232, e-mails:
alekova@ifi.uio.no; aikrastev.iser.bas@gmail.com; van_chavdarov@dir.bg

Abstract: In the context of learning new skills by imitation for children with special educational needs, we propose Wireless Kinect-
NAO Framework (WKNF) for robot teleoperation based on Takagi-Sugeno (T-S) Fuzzy Inference System. The innovative solutions here
are related to view invariant teleoperation, work online, smoothness in motion retargeting by median filter and fuzzifying of depth Kinect
data, motion mapping of Human to NAO movements by featured angles rather than direct Inverse Kinematics angles. The nonlinearity of
the observed 3D Kinect angles in different offsets is linearly approximated by T-S fuzzy rules of zero and first order that have local sup-
port in 2D projections. The feasibility of framework has been proven by real experiments.

Key words: Teleoperation, Telerobotics, Takagi–Sugeno fuzzy system, View invariance, Microsoft Kinect V2, NAO robot.

INTRODUCTION

Imitation involves a child’s ability to copy others and helps
children to learn new things and movements. Unfortunately,
children with special educational needs often have difficulty
with imitation. They lack the ability to share a focus on hu-
mans, however are attracted to robots and computerized tech-
nologies. Therefore, we seek for joyful play environment ex-
ploiting assistive technologies to enhance children’s ability to
imitate. In the context of the project [1], a Microsoft Kinect
sensor [2] is used for motion-sensing and mediating the pro-
cess of doing things by teleoperation to replicate the human
movements on the robot. Nowadays, teleoperation (or also mo-
tion retargeting) is achieved by sensors on the human or by ex-
ternal observations over time. Since the marker based motion
capturing systems are expensive and require careful cali-
bration, a lot of work has been done to study imitation by ex-
ternal observations for extracting 3D poses from an image se-
quence. Tracking the human motion is an attempt a kinematic
model of the robot to be recovered from the video sequences
and to be an input for the kinematic modules of the robot. The
teleoperation process has two stages: the operator’s calibration
stage and motion mapping to the robot.
In the present study, Kinect V2 sensor is used for teleoperation
of Aldebaran NAO humanoid robot V 2.1.4 [3]. These two
technologies used for imitation in the context of a play are ex-
pected to be easily set-up at day-care centers or schools from
people without engineering skills. So, the calibration of their
integration should be easy. Observing the changes in the hu-
man and robot movement we faced a variety of types of prob-
lems during design and implementation coming from the fol-
lowing requirements: (1) need of Kinect data smoothing and
filtering; (2) need of real-time operation; (3) smooth function
for motion retargeting without false sudden shifts that cause
the robot to move abruptly; (4) view-invariance and scalability
of the Inverse Kinematics solutions.
Changes in body movements should be incorporated online
and in real-time. There are two Aldebaran’s Inverse Kinemat-
ics (IK) functions on the robot side to control the arm’s joints
and move the hand point to a given position [3] by passing the
coordinates of a hand end positions or by using transformation
matrices to pass parameters to direct control of arm’s joints.
However, Aldebaran’s IK function works correctly only after
passing the orientation of the hand point from Kinect. Addi-

tionally, the noisy Kinect readings cause continuously chang-
ing joint angles and results in abrupt movement of the arms
even in steady state. The Kinect joint positions data are not
perfectly precise, meaning that they are scattered around the
correct joint positions in each frame and are accurate within a
centimetre range, not millimetre [4]. When the functions using
these data are not smooth (e.g. in calculating forearm size that
participate in formulae for angles) the sudden Kinect spikes
will cause the robot to move abruptly while the user is barely
changing pose.
Existing Solutions. The noise and variations of readings are
taken care of by the margin of error [5] or by filtering the Ki-
nect data [6]. The double exponential smoothing filter [4] is
the most used smoothing filter for Kinect data smoothing [6].
During calibration a complex reference coordination between
Kinect and robot coordinate frames requires a lot of code and
skills that therapists or educators do not have. Often the oper-
ator stays at predefined area in front of the Kinect view [7] or
complex transformation matrices are used for calibration be-
tween Kinect and NAO coordinate systems since different ar-
eas of the input space require different compensations and
scale independence.
An adaptive neuro-fuzzy inference system (ANFIS) for motion
mapping is proposed in [5], where three methods to imitate
human upper body motion are implemented on a NAO robot
and compared: (1) direct angle mapping method (2) IK using
fuzzy logic and (3) IK using iterative Jacobian. The direct
method requires the coordinates of three joints (shoulder, el-
bow and wrist) to determine NAO angles. However, continu-
ously changing angles for the positions result in jerky move-
ment. The IK using ANFIS method requires only two joint co-
ordinates and is found to be more efficient and fast because the
fuzzy system is trained a priory and there are not many com-
putations involved in mapping the coordinates of the end-ef-
fector to the joint angles. However, the training of the ANFIS
can take a long time depending on the amount of training data.
Moreover, the first method is used to train ANFIS and training
phase could not be performed from inexperienced persons.
Solving the IK problem iteratively using the Jacobian pseudo-
inverse requires two joints as well, but is found to be ineffi-
cient because a lot of iterations are required at each step and
the response of the robot is very slow. This method also gets

111

stuck in singularities. To the best of our knowledge we didn’t
find related works for Kinect–robot teleoperation based on
fuzzy depth data processing and motion retargeting. The Tak-
agi-Sugeno (T-S) fuzzy systems are mainly used for robot con-
trol, not for approximation reasoning over sensor data, as we
use it.
Considering the above problem requirements, we propose a
Wireless Kinect-NAO Framework (WKNF) for teleoperation
based on Takagi-Sugeno Fuzzy Inference System (T-SFIS).
The wireless framework connects middleware on Kinect side
and NAO robot side to transmit data to robot actuators. IK and
T-SFIS algorithms are online and lightweight in order not to
block the wireless connection to robot Python scripts in real
time. We have made a trade-off between latency and precision
in teleoperation by approximation reasoning. T-SFIS is chosen
as universal approximator since it presents a low time response
using a set of simple functions that require low CPU and
memory resources.
During the design and implementation of WKNF we found out
several innovative solutions, proposed in the next Section.
WKNF is view invariant considering the parallax effect and
normalize the calculated angles and distances. It works well
online, the smoothness in motion retargeting is ensured by me-
dian filter of depth Kinect data and fuzzyfication of distances
and angles calculated by vector algebra. Motion mapping is
performed by featured angles rather than direct angles. Fea-
tured angles are stable in the vision area of Kinect and at least
one of the joints establishing the vectors are not quickly chang-
ing joints, resulting in less scattered Kinect readings. We ex-
ploit trigonometric functions that stop amplifying the data
noise. T-S fuzzy rules of zero and first order that have local
support in 2D projections according to offsets of body parts are
used.

PROPOSED SOLUTIONS

In WKNF for motion retargeting we have to determine the
joint angles for the robot actuators to set a desired trajectory on
the basic of positions and orientations of the robot end-effec-
tors.

Processing Kinect body data to solve Inverse Kinematics task.
We analyse the Kinect depth and body stream data and identify
the 3D positions of upper body limbs over time. The important
joints for motion retargeting of upper limbs are left and right
shoulder, elbow, wrist and hand. During the movement, the
length and angles between each joint are changing at each
frame and some of them are considered as important features
to map the Kinect angles to angles of robot actuators. To re-
duce the spikes, we apply Median filter and we use it only for
joints that are more often in “Inferred State”, such as hand tips
and thumbs. This filter doesn’t introduce latency because it
doesn’t take advantage of the statistical distribution of data or
noise.
First we have tried to solve the problem for motion retargeting
using direct angle analytical method. However due to its poor
performance and ambiguous results, we searched for unique
angles that can feature the movement by θ1 to θ5 over time and
map them to NAO actuator angles. Featured angles are stable
in the vision area of Kinect and the joints forming the vectors
are not quickly changing joints, resulting in less scattered Ki-
nect readings. The extra joints we use for motion retargeting
are head, thumb and tip (see Figure 1 a).
The angle between two vectors defined by the three joints Pth,
Qth and Rth with coordinates: (xp , y р , zp) (xq , yq , zq)
and (xr , yr , zr), then the two vectors are 𝑃𝑄⃗⃗⃗⃗ ⃗ and 𝑄𝑅⃗⃗⃗⃗ ⃗ . The an-
gle between them is calculated by using equation (1).

θ𝑝𝑞𝑟 = cos−1[𝑃𝑄⃗⃗⃗⃗⃗⃗ ⋅𝑄𝑅⃗⃗ ⃗⃗ ⃗⃗

∥𝑃𝑄⃗⃗ ⃗⃗ ⃗⃗ ∥ ∥𝑄𝑅⃗⃗ ⃗⃗ ⃗⃗ ∥
] (1)

where 𝑃𝑄⃗⃗⃗⃗ ⃗⋅𝑄𝑅⃗⃗ ⃗⃗ ⃗ is the dot product (Eq.2) and ∥𝑃𝑄⃗⃗⃗⃗ ⃗∥ and ∥𝑄𝑅⃗⃗ ⃗⃗ ⃗∥ are
the lengths (Eq.3) .

𝑃𝑄⃗⃗⃗⃗ ⃗ ⋅ 𝑄𝑅⃗⃗ ⃗⃗ ⃗ = (x𝑞 − x𝑝) ∗ (x𝑟 − x𝑞) + (y𝑞 − y𝑝) ∗ (y𝑟 − y𝑞) +

(z𝑞 − z𝑝) ∗

(z𝑟 − z𝑞) (2)

∥ 𝑃𝑄⃗⃗⃗⃗ ⃗ ∥ = √(x𝑞 − x𝑝)
2 + (y𝑞 − y𝑝)

2 + (z𝑞 − z𝑝)
2 (3)

During the implementation we established that the noisy Ki-
nect readings result in noisy calculations for distances (we use
Euclidean formula) and 3D angles, different in the different ar-
ea of the input space. One of the reasons is that operations to
calculate body part sizes and relative positions such as addi-
tion, subtraction and multiplication, amplify the noise. Trigo-
nometric functions which are typically used for calculating
joint angles affect the noise in different ways. We use arc-
cosine that results in small radian values and even decrease the
noise. For unavoidable dependency on offsets of body parts,
we implement fuzzy rules that have local support in slit planes
in 2D projections (see Figure 4). Another reason for incorrect
calculations is the observed parallax effect.

a) b)

Figure 1. a) Important joints for motion retargeting of upper
limbs b) 3D model of the Nao right upper limb.

View invariance and scalability. Parallax arises due to change
in viewpoint occurring to motion of the observer. Since the
visual angle of an object projected onto the retina decreases
with distance, this information can be combined with previous
knowledge of the object's size (etalon) to determine the abso-
lute depth of the object. By measuring angles, and using ge-
ometry, one can determine the length of an object – x if r is the
radius between the object and the eye. From the Kinect’s eye
perspective, the changes in sizes a Kinect would see when the
user move far and close we also explain with motion parallax
effect. Consequently, the depth coordinate Z affects angle cal-
culations because the lengths of body parts participate in the
formulae. However, if we have an etalon (size(s) taken during
the Kinect calibration stage) we can measure the change in the
angle relative to human position in front of Kinect and to cor-
rect angles on the Kinect side according to current visual angle
(αcur) using Equations 4. In WKNF, the 2D distances for close-
ness are normalized either by the depth value Z (for tip and
thumb joints) or by dividing to αcur (for bigger limbs such as
hip and elbow).

(4)
/180* ;/180*

curretalloncorrect

currcurrcurretallon rxrx








The Need of Fuzzy-Based Reasoning. Kinect and NAO have
different coordinate systems, as well as NAO has joint limita-
tions (see Figure 6 a). Because of the context of the application
(play for children) we made a trade-off between the precision
of motion retargeting, easy calibration and NAO response de-
lay. We applied approximate reasoning to handle Kinect noise
readings and provide a universal approach for motion mapping

112

instead to do a complex calibration between Kinect and NAO
coordinate systems.
Fuzzy logic is a superset of classical logic with the introduc-
tion of “degree of membership”. Uncertainties are presented as
fuzzy sets (Ai), which are often expressed by words and inter-
preted by their membership functions µA. We exploit the Tak-
agi-Sugeno (T-S) fuzzy model as a universal function ap-
proximator [8]. Its structure consists of rules in the form:

k

n

k

i
k

i
0iii xaa y THEN A is x IF:R 





1

 (5)

where D)x,...,x,x(x n  21 is a vector representing the inputs
defined on D. Ai is a fuzzy set defined on certain domain (D);
yi is a scalar output corresponding to rule i ; i

ka are the conse-
quence parameters associated to rule i. }p,...,{i 1 , where p is
the number of rules. For a zero-order T-S model, the output
level y is a constant (a0 = ak = 0). The rules are aggregated and
defuzzified by using the fuzzy-mean formula:






p

i
A

p

i
iA)x(y)x()x(y

iik

11

 (6)

where)x(
ikA is the degree of fulfillment of i-th rule.

)x()x,...,x,x()x(kA

'n

k
nAA ikiki T 

1
21



 ,

where 'n is the number of input variables in i-th rule (nn' ),
T is a type of t-(co)norm as minimum, product, etc.

During the design we identify premise and consequence pa-
rameters and write a fuzzy-rules base (FRB) for mapping an-
gles from Kinect to NAO coordinate frames over time. We use
fuzzy trapezoidal membership functions (simple and fast for
calculation), where the upper base of a trapezoid takes care of
small scattering, i.e. ignoring the scattering in centimetre range
that cause the robot to move abruptly while the user is barely
changing pose. We observed nonlinearity during the mapping
for some of the 3D Kinect to NAO angles in different offsets.
For instance, during the mapping of the angle values to move
the hand to a given location, NAO right shoulder roll angle
(see Figure 3b) has constant values in different hand-body off-
sets, while the 3D Kinect angle θ4 is changing in dependence
on distances between 2D joint positions of the right hip and el-
bow. The proposed solution is to partition the 3D input space
in several projections such that a linear approximation of un-
known mapping relation is possible in these ranges with ac-
cepted error less than 5%. The goal is to obtain the premise
and consequence parameters of T-S and the required model er-
ror ε. If the error is less than 5% zero-order T-S is used, other-
wise first-order, second, etc., till the error gets below 5%. The
less rules used (i.e. coarse fuzzy partition) the bigger error.
The first step is in several 2D projections to identify the group
of states having similar linear approximation of mapping, and
to distinguish these states as fuzzy sets. Their membership
functions will classify the Kinect angle in degrees into these
fuzzy sets. The second step is to find the local approximation
linear solutions and to aggregate and defuzzifying them by
equation (6).

IMPLEMENTATION AND EVALUATION

Technical Specification. Kinect V2 sensor is connected to a
laptop with Intel(R) Core (TM) i7-5500U CPU@ 2.40 GHz
and transmits sensor data to a software application running on
the laptop, built in C#, referencing Microsoft Kinect library
(SDK 2.0) and performing data pre-processing and motion re-
targeting. Apart from the robot hardware and Kinect sensor, no
other hardware is used. Three middleware are connected: Ki-
nect SDK2 [2], NAO.NET on the Kinect side [9] and Naoqi

2.1.4 on the robot side [3]. Apart from those middleware, the
framework is built only in C# on the Kinect side and Python
scripts on the robot side. These codes run in parallel - first
running on a laptop and connected to the Kinect sensor to pro-
vide body joint tracking and fuzzy logic processing, and sec-
ond running on the robot side - waiting to receive data from
Kinect side via Wi-Fi and use it to make the move of the robot
actuators. The latency of fuzzy reasoning (how much time it
takes for robot output to catch up to the actual human joint po-
sition when there is a movement in a joint) is not introduced in
CPU time it takes for executing the T-SFIS. In general, the de-
lay depends on the number of the simultaneously open Python
scripts and the number of per frame passing parameters to
these scripts. The reasonable trade-off between precision and
latency is proven by real experiments (Figure 2), where we in-
fer the angles for the robot actuators over time by fuzzy rea-
soning via numerically processing of the information in the
fuzzy rules.
On Kinect side we process the 3D coordinates of joints at each
consecutive frame. The applied Median filter output is the me-
dian of the last N inputs (joint positions). It latency depends on
N and we use it only for N=20 Kinect frames. We calculate the
joint angles by analytical IK per frame. The Kinect tracking
algorithm operates in 3D camera space, however for some off-
sets (such as closeness), limb sizes and angles we use the Ki-
nect Coordinate Mapping to project 3D points from camera
space to a row/column location in the depth space with origin
x=0, y=0 corresponding to the top left corner of the depth im-
age. Thus, we operate only with positive values for joint coor-
dinates.
Modelling of uncertainties consists of information about lin-
guistic variables, domains, constraints as fuzzy sets (Figure 3)
and fuzzifiers. The values of constraints, normalized in the
range [0÷1], take part in the premise parameters in IF-THEN
fuzzy rules, such as Kinect angles and/or 2D distances. The
rules map the input values to the output space in terms of im-
plication relation between fuzzy sets in “IF” and functions in
“THEN” parts. Fuzzified input data trigger one or several rules
in the fuzzy model to calculate the result. Two type of func-
tions for motion mapping of Kinect angles to NAO space in
“THEN” parts are designed: function approximation using
first-order T-S model and zero-order T-S model.

Figure 2. Real experiments with children

10 30

Right
R

Mid Acute
MA

Very acute
VA

98

µ
1

0

θ
[degr] 93 50 60

Acute
A

7
a) for angle θ3

1.6 3.6

FarX
F

CloseX
C

Very closeX
VC

10

µ
1

0

dist/Z
[px] 5.8 4.6 5.4

b) for distances in XZ slit

Figure 3. Premise parameters

113

To cope with the nonlinearity of the observed Kinect angles in
X and Y split planes where the 3D Kinect angles vary (see
Figure 4), we implemented the proposed solution to partition
the 3D input space and decompose the mapping of Kinect to
NAO in the slit planes in XZ and YZ projections and use first-
order T-S Linguistic values (semantically close values) for an-
gles in different slit planes according to the closeness of the
hand to the body and normalized by current parallax angle,
form the premise parameters participating in the fuzzy rules
that are presented in Figures 5.

Consequences are the equations of the trend lines.

Figure 4. Local support of features in XZ and YZ projections

TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-4.4322 * the-
ta4 + 641.34, new string[] { “All”, “very_closeY” }));

 TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-1.3333*
theta4 + 190 , new string[] { “RightObtuse”, “med_closeY” }));

 TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-5.6129 *
theta4 + 834.95, new string[] { “Obtuse”, “med_closeY” }));
 TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-74,

new string[] { “RightObtuse4”, “med_closeY” }));
 TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-0.8333*

theta4 + 115, new string[] { “RightObtuse”, “closeY” }));
 TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-2.6761 *

theta4 + 394.57, new string[] { “RightObtuse3”, “closeY” }));
 TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-2.5037 *

theta4 + 366.96, new string[] { “All”, “farY” }));

Figure 5. Kinect θ4 mapping to NAO RShoulderRoll angle

Decomposition is used also to handle anti-collision limitations
due to potential shell collision at the head level. They are im-
plemented by fuzzy rules as well. As it can be seen in Figure
6a), the Pitch motion range is limited according to the Yaw
value. First we map the angle HeadYaw by T-S of zero order
and then HeadPitch Min and Max according to the first order
T-S functions presented in Figure 6b) and 6c).

Figures 6. b) and c) show how collision relations between
HeadYaw and HeadPitch angles are approximated linearly in
four semantically closed groups (forming the premise param-
eters), the trend lines (forming consequence parameters for
each semantic group), their equations and squared errors. If the
error is not acceptable, the first step is repeated until deriving
premise parameters. Having premise and consequence param-
eters, we write fuzzy rules for linearly approximation of non-
linearity. Two example fuzzy rules of zero and first-order T-S
derived from Figure 6. c) are presented below.

45.787 - 0.3225 then obtuse is μ and acute is μ If :R

40 hen right is and acute is If :R

21 4

1 3

11

11











t

 By using first-order T-S rather than zero order, we limit the
movements and reduce the number of fuzzy sets used, respec-
tively the number of fuzzy rules in the whole system.

HeadYaw HeadPitch Min HeadPitch Max

-119.52º -25.73 º 18.91 º

-87.49 º -18.91 º 11.46 º

and so on

a) Anti-collision limitation due to Aldebaran Table [3]

b) Consequence Parameters

c) Consequence Parameters

Figure 6. Anti-collision limitations at the head level

The feasibility and real time operation of the proposed WKNF
has been proven by videos in [1], Section Results> Games for
motor and cognitive rehabilitation> Imitation. The overall la-
tency is less than 100 milliseconds that is suggested for devel-
opers. The problems we aim to solve are for imitation of the
whole body. In the future, we intend to incorporate in the
fuzzy reasoning the NAO center of mass for robot stability.

CONCLUSION

The proposed wireless Kinect-NAO framework for teleopera-
tion has been implemented and tested with children and adults.
Its feasibility and usability have been proven by real experi-
ments with required accuracy, view invariance and response in
real time. Structured expressions of natural language as lin-
guistic IF-THEN rules, flexible fuzzy sets and easy for imple-
mentation wireless connection to NAO middleware allow the
framework to be tried by others without detailed knowledge
for video processing, inverse Kinematic task in Robotics and
fuzzy logic.

ACKNOWLEDGMENTS

This research is supported by the EEA grants, BG09 N D03-
90/27.05.2015, Measure “Projects for Interinstitutional Coop-
eration”.

REFERENCES

1. http://iser.bas.bg/METEMSS/en/

2. http://www.microsoft.com/en-us/kinectforwindows

y = -0.0069x2 + 2E-15x + 29.51

0

20

40

-150 -100 -50 0 50 100 150

HeadPitch Max

R² = 6E-33 R² = 6E-33

R² = 0,961

y = 0.3225x - 45.787
R² = 0.961

-60

-40

-20

0

-150 -100 -50 0 50 100 150

HeadPitch Min

114

http://www.microsoft.com/en-us/kinectforwindows

3. Aldebaran NAO humanoid robot, URL:
https://www.ald.softbankrobotics.com/en/cool-robots/nao

4. Skeletal Joint Smoothing White Paper. URL:
http://msdn.microsoft.com/en-us/library/jj131429

5. Mukherjee S., et all, Inverse kinematics of a NAO humanoid
robot using Kinect to track and imitate human motion, Int.
Conf. RACE 2015, 18-20 Feb, Chennai, India, 1-7.

6. Wenbai C. et all, Human’s Gesture Recognition and Imita-
tion Based on Robot NAO, Signal Processing, Image Pro-
cessing and Pattern Recognition, Vol.8, N12, 2015, 259-270

7. Rodriguez I, et al. Humanizing NAO robot teleoperation
using ROS, 14th IEEE-RAS Int. Conf. on Humanoid Robots,
November 18-20, 2014. Madrid, Spain, 179-186

8. Takagi T., Sugeno M. Fuzzy Identification of Systems and
Its Applications to Modelling and Control. IEEE Trans. Sys.
Man Cyber. 1985, 15:116–132

9. Gamal T., NAO.NET. http://www.codeproject.com/Tips/

1002530/NAO-NET-Python-programs-to-NET

115

https://www.ald.softbankrobotics.com/en/cool-robots/nao
http://msdn.microsoft.com/en-us/library/jj131429
http://www.codeproject.com/Tips/
file:///C:/Users/Emil%20Nikolov/Desktop/16_SAI_Conference_2016/14092016/Новополучени%20редактирани%20доклади/1002530/NAO-NET-Python-programs-to-NET

116

