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Abstract:  In the context of learning new skills by imitation for children with special educational needs, we propose Wireless Kinect-
NAO Framework (WKNF) for robot teleoperation based on Takagi-Sugeno (T-S) Fuzzy Inference System. The innovative solutions here 
are related to view invariant teleoperation, work online, smoothness in motion retargeting by median filter and fuzzifying of depth Kinect 
data, motion mapping of Human to NAO movements by featured angles rather than direct Inverse Kinematics angles. The nonlinearity of 
the observed 3D Kinect angles in different offsets is linearly approximated by T-S fuzzy rules of zero and first order that have local sup-
port in 2D projections. The feasibility of framework has been proven by real experiments. 
  
Key words: Teleoperation, Telerobotics, Takagi–Sugeno fuzzy system, View invariance, Microsoft Kinect V2, NAO robot.  
  

 
INTRODUCTION  

 

 
 

Imitation involves a child’s ability to copy others and helps 
children to learn new things and movements. Unfortunately, 
children with special educational needs often have difficulty 
with imitation. They lack the ability to share a focus on hu-
mans, however are attracted to robots and computerized tech-
nologies. Therefore, we seek for joyful play environment ex-
ploiting assistive technologies to enhance children’s ability to 
imitate. In the context of the project [1], a Microsoft Kinect 
sensor [2] is used for motion-sensing and mediating the pro-
cess of doing things by teleoperation to replicate the human 
movements on the robot. Nowadays, teleoperation (or also mo-
tion retargeting) is achieved by sensors on the human or by ex-
ternal observations over time. Since the marker based motion 
capturing systems are expensive and require careful cali-
bration, a lot of work has been done to study imitation by ex-
ternal observations for extracting 3D poses from an image se-
quence. Tracking the human motion is an attempt a kinematic 
model of the robot to be recovered from the video sequences 
and to be an input for the kinematic modules of the robot. The 
teleoperation process has two stages: the operator’s calibration 
stage and motion mapping to the robot. 
In the present study, Kinect V2 sensor is used for teleoperation 
of Aldebaran NAO humanoid robot V 2.1.4 [3]. These two 
technologies used for imitation in the context of a play are ex-
pected to be easily set-up at day-care centers or schools from 
people without engineering skills. So, the calibration of their 
integration should be easy. Observing the changes in the hu-
man and robot movement we faced a variety of types of prob-
lems during design and implementation coming from the fol-
lowing requirements: (1) need of Kinect data smoothing and 
filtering; (2) need of real-time operation; (3) smooth function 
for motion retargeting without false sudden shifts that cause 
the robot to move abruptly; (4) view-invariance and scalability 
of the Inverse Kinematics solutions.  
Changes in body movements should be incorporated online 
and in real-time. There are two Aldebaran’s Inverse Kinemat-
ics (IK) functions on the robot side to control the arm’s joints 
and move the hand point to a given position [3] by passing the 
coordinates of a hand end positions or by using transformation 
matrices to pass parameters to direct control of arm’s joints. 
However, Aldebaran’s IK function works correctly only after 
passing the orientation of the hand point from Kinect. Addi-

tionally, the noisy Kinect readings cause continuously chang-
ing joint angles and results in abrupt movement of the arms 
even in steady state. The Kinect joint positions data are not 
perfectly precise, meaning that they are scattered around the 
correct joint positions in each frame and are accurate within a 
centimetre range, not millimetre [4]. When the functions using 
these data are not smooth (e.g. in calculating forearm size that 
participate in formulae for angles) the sudden Kinect spikes 
will cause the robot to move abruptly while the user is barely 
changing pose.  
Existing Solutions. The noise and variations of readings are 
taken care of by the margin of error [5] or by filtering the Ki-
nect data [6]. The double exponential smoothing filter [4] is 
the most used smoothing filter for Kinect data smoothing [6]. 
During calibration a complex reference coordination between 
Kinect and robot coordinate frames requires a lot of code and 
skills that therapists or educators do not have. Often the oper-
ator stays at predefined area in front of the Kinect view [7] or 
complex transformation matrices are used for calibration be-
tween Kinect and NAO coordinate systems since different ar-
eas of the input space require different compensations and 
scale independence. 
An adaptive neuro-fuzzy inference system (ANFIS) for motion 
mapping is proposed in [5], where three methods to imitate 
human upper body motion are implemented on a NAO robot 
and compared: (1) direct angle mapping method (2) IK using 
fuzzy logic and (3) IK using iterative Jacobian. The direct 
method requires the coordinates of three joints (shoulder, el-
bow and wrist) to determine NAO angles. However, continu-
ously changing angles for the positions result in jerky move-
ment. The IK using ANFIS method requires only two joint co-
ordinates and is found to be more efficient and fast because the 
fuzzy system is trained a priory and there are not many com-
putations involved in mapping the coordinates of the end-ef-
fector to the joint angles. However, the training of the ANFIS 
can take a long time depending on the amount of training data. 
Moreover, the first method is used to train ANFIS and training 
phase could not be performed from inexperienced persons. 
Solving the IK problem iteratively using the Jacobian pseudo-
inverse requires two joints as well, but is found to be ineffi-
cient because a lot of iterations are required at each step and 
the response of the robot is very slow. This method also gets 
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stuck in singularities. To the best of our knowledge we didn’t 
find related works for Kinect–robot teleoperation based on 
fuzzy depth data processing and motion retargeting. The Tak-
agi-Sugeno (T-S) fuzzy systems are mainly used for robot con-
trol, not for approximation reasoning over sensor data, as we 
use it. 
Considering the above problem requirements, we propose a 
Wireless Kinect-NAO Framework (WKNF) for teleoperation 
based on Takagi-Sugeno Fuzzy Inference System (T-SFIS). 
The wireless framework connects middleware on Kinect side 
and NAO robot side to transmit data to robot actuators. IK and 
T-SFIS algorithms are online and lightweight in order not to 
block the wireless connection to robot Python scripts in real 
time. We have made a trade-off between latency and precision 
in teleoperation by approximation reasoning. T-SFIS is chosen 
as universal approximator since it presents a low time response 
using a set of simple functions that require low CPU and 
memory resources.  
During the design and implementation of WKNF we found out 
several innovative solutions, proposed in the next Section.  
WKNF is view invariant considering the parallax effect and 
normalize the calculated angles and distances. It works well 
online, the smoothness in motion retargeting is ensured by me-
dian filter of depth Kinect data and fuzzyfication of distances 
and angles calculated by vector algebra. Motion mapping is 
performed by featured angles rather than direct angles. Fea-
tured angles are stable in the vision area of Kinect and at least 
one of the joints establishing the vectors are not quickly chang-
ing joints, resulting in less scattered Kinect readings. We ex-
ploit trigonometric functions that stop amplifying the data 
noise. T-S fuzzy rules of zero and first order that have local 
support in 2D projections according to offsets of body parts are 
used.  
 

PROPOSED SOLUTIONS 
 
In WKNF for motion retargeting we have to determine the 
joint angles for the robot actuators to set a desired trajectory on 
the basic of positions and orientations of the robot end-effec-
tors.  
 
Processing Kinect body data to solve Inverse Kinematics task. 
We analyse the Kinect depth and body stream data and identify 
the 3D positions of upper body limbs over time. The important 
joints for motion retargeting of upper limbs are left and right 
shoulder, elbow, wrist and hand. During the movement, the 
length and angles between each joint are changing at each 
frame and some of them are considered as important features 
to map the Kinect angles to angles of robot actuators. To re-
duce the spikes, we apply Median filter and we use it only for 
joints that are more often in “Inferred State”, such as hand tips 
and thumbs. This filter doesn’t introduce latency because it 
doesn’t take advantage of the statistical distribution of data or 
noise. 
First we have tried to solve the problem for motion retargeting 
using direct angle analytical method. However due to its poor 
performance and ambiguous results, we searched for unique 
angles that can feature the movement by θ1 to θ5 over time and 
map them to NAO actuator angles. Featured angles are stable 
in the vision area of Kinect and the joints forming the vectors 
are not quickly changing joints, resulting in less scattered Ki-
nect readings.  The extra joints we use for motion retargeting 
are head, thumb and tip (see Figure 1 a). 
The angle between two vectors defined by the three joints   Pth,    
Qth    and   Rth   with  coordinates: (xp , y р  , zp )   (xq , yq , zq ) 
and (xr , yr , zr ), then the two vectors are  𝑃𝑄⃗⃗⃗⃗  ⃗ and 𝑄𝑅⃗⃗⃗⃗  ⃗ . The an-
gle between them is calculated by using equation (1). 
 

θ𝑝𝑞𝑟 = cos−1[ 𝑃𝑄⃗⃗⃗⃗⃗⃗ ⋅𝑄𝑅⃗⃗ ⃗⃗ ⃗⃗   

∥𝑃𝑄⃗⃗ ⃗⃗ ⃗⃗  ∥ ∥𝑄𝑅⃗⃗ ⃗⃗ ⃗⃗  ∥ 
]        (1) 

where 𝑃𝑄⃗⃗⃗⃗  ⃗⋅𝑄𝑅⃗⃗ ⃗⃗  ⃗ is the dot product (Eq.2) and ∥𝑃𝑄⃗⃗⃗⃗  ⃗∥ and ∥𝑄𝑅⃗⃗ ⃗⃗  ⃗∥ are 
the lengths  (Eq.3) . 
 
𝑃𝑄⃗⃗⃗⃗  ⃗ ⋅ 𝑄𝑅⃗⃗ ⃗⃗  ⃗ = (x𝑞 − x𝑝) ∗ (x𝑟 − x𝑞) + (y𝑞 − y𝑝) ∗ (y𝑟 − y𝑞) +

(z𝑞 − z𝑝) ∗

(z𝑟 − z𝑞)                                                                                                        (2) 

∥ 𝑃𝑄⃗⃗⃗⃗  ⃗ ∥  = √(x𝑞 − x𝑝)
2 + (y𝑞 − y𝑝)

2 + (z𝑞 − z𝑝)
2                    (3) 

 
During the implementation we established that the noisy Ki-
nect readings result in noisy calculations for distances (we use 
Euclidean formula) and 3D angles, different in the different ar-
ea of the input space. One of the reasons is that operations to 
calculate body part sizes and relative positions such as addi-
tion, subtraction and multiplication, amplify the noise. Trigo-
nometric functions which are typically used for calculating 
joint angles affect the noise in different ways. We use arc-
cosine that results in small radian values and even decrease the 
noise. For unavoidable dependency on offsets of body parts, 
we implement fuzzy rules that have local support in slit planes 
in 2D projections (see Figure 4). Another reason for incorrect 
calculations is the observed parallax effect.  

 
a)                                        b)                     

Figure 1. a) Important joints for motion retargeting of upper 
limbs b) 3D model of the Nao right upper limb. 

 
View invariance and scalability.  Parallax arises due to change 
in viewpoint occurring to motion of the observer. Since the 
visual angle of an object projected onto the retina decreases 
with distance, this information can be combined with previous 
knowledge of the object's size (etalon) to determine the abso-
lute depth of the object. By measuring angles, and using ge-
ometry, one can determine the length of an object – x if r is the 
radius between the object and the eye. From the Kinect’s eye 
perspective, the changes in sizes a Kinect would see when the 
user move far and close we also explain with motion parallax 
effect. Consequently, the depth coordinate Z affects angle cal-
culations because the lengths of body parts participate in the 
formulae. However, if we have an etalon (size(s) taken during 
the Kinect calibration stage) we can measure the change in the 
angle relative to human position in front of Kinect and to cor-
rect angles on the Kinect side according to current visual angle 
(αcur) using Equations 4. In WKNF, the 2D distances for close-
ness are normalized either by the depth value Z (for tip and 
thumb joints) or by dividing to αcur (for bigger limbs such as 
hip and elbow). 
 

(4)                                                           
/180*              ;/180*

curretalloncorrect

currcurrcurretallon rxrx






  

The Need of Fuzzy-Based Reasoning. Kinect and NAO have 
different coordinate systems, as well as NAO has joint limita-
tions (see Figure 6 a). Because of the context of the application 
(play for children) we made a trade-off between the precision 
of motion retargeting, easy calibration and NAO response de-
lay. We applied approximate reasoning to handle Kinect noise 
readings and provide a universal approach for motion mapping 
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instead to do a complex calibration between Kinect and NAO 
coordinate systems.  
Fuzzy logic is a superset of classical logic with the introduc-
tion of “degree of membership”. Uncertainties are presented as 
fuzzy sets (Ai), which are often expressed by words and inter-
preted by their membership functions µA.  We exploit the Tak-
agi-Sugeno (T-S) fuzzy model as a universal function ap-
proximator [8]. Its structure consists of rules in the form: 

k

n

k

i
k

i
0iii xaa y THEN A is x IF:R 





1

           (5) 

where  D  )x,...,x,x(x n  21  is a vector representing the inputs 
defined on D. Ai is a fuzzy set defined on certain domain (D);  
yi is a scalar output corresponding to rule i ; i

ka are the conse-
quence parameters associated to rule i. }p,...,{i 1 , where p is 
the number of rules. For a zero-order T-S model, the output 
level y is a constant (a0 = ak = 0). The rules are aggregated and 
defuzzified by using the fuzzy-mean formula: 






p

i
A

p

i
iA )x(y)x()x(y

iik

11

               (6) 

where )x(
ikA  is the degree of fulfillment of i-th rule.  

)x()x,...,x,x()x( kA

'n

k
nAA ikiki T 

1
21



 , 

where 'n  is the number of input variables in i-th rule ( nn'  ), 
T is a type of t-(co)norm as minimum, product, etc.  
 
During the design we identify premise and consequence pa-
rameters and write a fuzzy-rules base (FRB) for mapping an-
gles from Kinect to NAO coordinate frames over time. We use 
fuzzy trapezoidal membership functions (simple and fast for 
calculation), where the upper base of a trapezoid takes care of 
small scattering, i.e. ignoring the scattering in centimetre range 
that cause the robot to move abruptly while the user is barely 
changing pose. We observed nonlinearity during the mapping 
for some of the 3D Kinect to NAO angles in different offsets. 
For instance, during the mapping of the angle values to move 
the hand to a given location, NAO right shoulder roll angle 
(see Figure 3b) has constant values in different hand-body off-
sets, while the 3D Kinect angle θ4 is changing in dependence 
on distances between 2D joint positions of the right hip and el-
bow. The proposed solution is to partition the 3D input space 
in several projections such that a linear approximation of un-
known mapping relation is possible in these ranges with ac-
cepted error less than 5%. The goal is to obtain the premise 
and consequence parameters of T-S and the required model er-
ror ε. If the error is less than 5% zero-order T-S is used, other-
wise first-order, second, etc., till the error gets below 5%. The 
less rules used (i.e. coarse fuzzy partition) the bigger error. 
The first step is in several 2D projections to identify the group 
of states having similar linear approximation of mapping, and 
to distinguish these states as fuzzy sets. Their membership 
functions will classify the Kinect angle in degrees into these 
fuzzy sets. The second step is to find the local approximation 
linear solutions and to aggregate and defuzzifying them by 
equation (6). 

 
IMPLEMENTATION AND EVALUATION 

 
Technical Specification. Kinect V2 sensor is connected to a 
laptop with Intel(R) Core (TM) i7-5500U CPU@ 2.40 GHz 
and transmits sensor data to a software application running on 
the laptop, built in C#, referencing Microsoft Kinect library 
(SDK 2.0) and performing data pre-processing and motion re-
targeting. Apart from the robot hardware and Kinect sensor, no 
other hardware is used. Three middleware are connected: Ki-
nect SDK2 [2], NAO.NET on the Kinect side [9] and Naoqi 

2.1.4 on the robot side [3]. Apart from those middleware, the 
framework is built only in C# on the Kinect side and Python 
scripts on the robot side. These codes run in parallel - first 
running on a laptop and connected to the Kinect sensor to pro-
vide body joint tracking and fuzzy logic processing, and sec-
ond running on the robot side - waiting to receive data from 
Kinect side via Wi-Fi and use it to make the move of the robot 
actuators. The latency of fuzzy reasoning (how much time it 
takes for robot output to catch up to the actual human joint po-
sition when there is a movement in a joint) is not introduced in 
CPU time it takes for executing the T-SFIS. In general, the de-
lay depends on the number of the simultaneously open Python 
scripts and the number of per frame passing parameters to 
these scripts. The reasonable trade-off between precision and 
latency is proven by real experiments (Figure 2), where we in-
fer the angles for the robot actuators over time by fuzzy rea-
soning via numerically processing of the information in the 
fuzzy rules.  
On Kinect side we process the 3D coordinates of joints at each 
consecutive frame. The applied Median filter output is the me-
dian of the last N inputs (joint positions). It latency depends on 
N and we use it only for N=20 Kinect frames. We calculate the 
joint angles by analytical IK per frame. The Kinect tracking 
algorithm operates in 3D camera space, however for some off-
sets (such as closeness), limb sizes and angles we use the Ki-
nect Coordinate Mapping to project 3D points from camera 
space to a row/column location in the depth space with origin 
x=0, y=0 corresponding to the top left corner of the depth im-
age. Thus, we operate only with positive values for joint coor-
dinates.  
Modelling of uncertainties consists of information about lin-
guistic variables, domains, constraints as fuzzy sets (Figure 3) 
and fuzzifiers. The values of constraints, normalized in the 
range [0÷1], take part in the premise parameters in IF-THEN 
fuzzy rules, such as Kinect angles and/or 2D distances. The 
rules map the input values to the output space in terms of im-
plication relation between fuzzy sets in “IF” and functions in 
“THEN” parts. Fuzzified input data trigger one or several rules 
in the fuzzy model to calculate the result. Two type of func-
tions for motion mapping of Kinect angles to NAO space in 
“THEN” parts are designed: function approximation using 
first-order T-S model and zero-order T-S model. 
 

 
Figure 2. Real experiments with children 
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To cope with the nonlinearity of the observed Kinect angles in 
X and Y split planes where the 3D Kinect angles vary (see 
Figure 4),  we implemented the proposed solution to partition 
the 3D input space and decompose the mapping of Kinect to 
NAO in the slit planes in XZ and YZ projections and use first-
order T-S Linguistic values (semantically close values) for an-
gles in different slit planes according to the closeness of the 
hand to the body and normalized by current parallax angle, 
form the premise parameters participating in the fuzzy rules 
that are presented in Figures 5. 
 
Consequences are the equations of the trend lines. 

 
Figure 4. Local support of features in XZ and YZ projections  

 
 

TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-4.4322 * the-
ta4 + 641.34, new string[] { “All”, “very_closeY” })); 

        TSFS_RSR.addRule(new TagakiSugenoFuzzyRule( -1.3333* 
theta4 + 190 , new string[] { “RightObtuse”, “med_closeY” })); 

        TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-5.6129 * 
theta4 + 834.95, new string[] { “Obtuse”, “med_closeY” }));  
        TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-74,                      

new string[] { “RightObtuse4”, “med_closeY” }));  
        TSFS_RSR.addRule(new TagakiSugenoFuzzyRule( -0.8333* 

theta4 + 115, new string[] { “RightObtuse”, “closeY” }));  
        TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-2.6761 * 

theta4 + 394.57, new string[] { “RightObtuse3”, “closeY” }));  
        TSFS_RSR.addRule(new TagakiSugenoFuzzyRule(-2.5037 * 

theta4 + 366.96, new string[] { “All”, “farY” })); 

Figure 5. Kinect θ4 mapping to NAO RShoulderRoll angle 
 

Decomposition is used also to handle anti-collision limitations 
due to potential shell collision at the head level. They are im-
plemented by fuzzy rules as well. As it can be seen in Figure 
6a), the Pitch motion range is limited according to the Yaw 
value. First we map the angle HeadYaw by T-S of zero order 
and then HeadPitch Min and Max according to  the first order 
T-S functions presented in Figure 6b) and 6c). 

Figures 6. b) and c) show how collision relations between 
HeadYaw and HeadPitch angles are approximated linearly in 
four semantically closed groups (forming the premise param-
eters), the trend lines (forming consequence parameters for 
each semantic group), their equations and squared errors. If the 
error is not acceptable, the first step is repeated until deriving 
premise parameters. Having premise and consequence param-
eters, we write fuzzy rules for linearly approximation of non-
linearity.  Two example fuzzy rules of zero and first-order T-S 
derived from Figure 6. c) are presented below. 

45.787 -  0.3225   then  obtuse  is μ and acute is μ If :R

40 hen  right  is  and acute is  If :R

21  4

1  3

11

11











t

 By using first-order T-S rather than zero order, we limit the 
movements and reduce the number of fuzzy sets used, respec-
tively the number of fuzzy rules in the whole system. 
 

HeadYaw HeadPitch Min HeadPitch Max 

-119.52º -25.73 º 18.91 º 

-87.49 º -18.91 º 11.46 º 

and so on   

a) Anti-collision limitation due to Aldebaran Table [3] 

 
b)    Consequence Parameters             

 
c) Consequence Parameters 

Figure 6. Anti-collision limitations at the head level 
 
The feasibility and real time operation of the proposed WKNF 
has been proven by videos in [1], Section Results> Games for 
motor and cognitive rehabilitation> Imitation. The overall la-
tency is less than 100 milliseconds that is suggested for devel-
opers. The problems we aim to solve are for imitation of the 
whole body. In the future, we intend to incorporate in the 
fuzzy reasoning the NAO center of mass for robot stability. 

 
CONCLUSION 

 
The proposed wireless Kinect-NAO framework for teleopera-
tion has been implemented and tested with children and adults. 
Its feasibility and usability have been proven by real experi-
ments with required accuracy, view invariance and response in 
real time. Structured expressions of natural language as lin-
guistic IF-THEN rules, flexible fuzzy sets and easy for imple-
mentation wireless connection to NAO middleware allow the 
framework to be tried by others without detailed knowledge 
for video processing, inverse Kinematic task in Robotics and 
fuzzy logic. 
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