

Ch. 3: Forward and Inverse Kinematics

Updates

- Document clarifying the Denavit-Hartenberg convention is posted
- Labs and section times announced
 - If you haven't already, please forward your availability to Shelten & Ben
- Matlab review session Tuesday 2/13, 6:00 MD 221

Recap: The Denavit-Hartenberg (DH) Convention

 Representing each individual homogeneous transformation as the product of four basic transformations:

$$\begin{aligned} & A_i = \mathbf{Rot}_{z,\theta_i} \mathbf{Trans}_{z,d_i} \mathbf{Trans}_{x,a_i} \mathbf{Rot}_{x,\alpha_i} \\ & = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Recap: the physical basis for DH parameters

- a_i : link length, distance between the o_0 and o_1 (projected along x_1)
- α_i : link twist, angle between z_0 and z_1 (measured around x_1)
- d_i : link offset, distance between o_0 and o_1 (projected along z_0)
- θ_i : joint angle, angle between x_0 and x_1 (measured around z_0)

General procedure for determining forward kinematics

- 1. Label joint axes as z_0, \ldots, z_{n-1} (axis z_i is joint axis for joint i+1)
- 2. Choose base frame: set o_0 on z_0 and choose x_0 and y_0 using right-handed convention
- 3. For i=1:n-1,
 - i. Place o_i where the normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} , put o_i at intersection. If z_i and z_{i-1} are parallel, place o_i along z_i such that $d_i=0$
 - ii. x_i is the common normal through o_i , or normal to the plane formed by z_{i-1} and z_i if the two intersect
 - iii. Determine *y_i* using right-handed convention
- 4. Place the tool frame: set z_n parallel to z_{n-1}
- 5. For i=1:n, fill in the table of DH parameters
- 6. Form homogeneous transformation matrices, A_i
- 7. Create T_n^0 that gives the position and orientation of the end-effector in the inertial frame

Example 2: three-link cylindrical robot

- 3DOF: need to assign four coordinate frames
 - 1. Choose z_0 axis (axis of rotation for joint 1, base frame)
 - 2. Choose z_1 axis (axis of translation for joint 2)
 - 3. Choose z_2 axis (axis of translation for joint 3)
 - 4. Choose z_3 axis (tool frame)
 - This is again arbitrary for this case since we have described no wrist/gripper
 - Instead, define z_3 as parallel to z_2

Example 2: three-link cylindrical robot

- Now define DH parameters
 - First, define the constant parameters a_i , α_i
 - Second, define the variable parameters θ_i , d_i

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$T_3^0 = A_1 A_2 A_3 =$	C_1	0	$-s_1$	$-s_1d_3$
$T^0 - \Lambda \Lambda \Lambda -$	S ₁	0	C ₁	c_1d_3
$I_3 = A_1 A_2 A_3 =$	0	-1	0	$d_1 + d_2$
	0	0	0	1

link	a _i	α_i	d_i	θ_{i}
1	0	0	d_1	θ_1
2	0	-90	d_2	0
3	0	0	d_3	0

Example 3: spherical wrist

- 3DOF: need to assign four coordinate frames
 - yaw, pitch, roll (θ_4 , θ_5 , θ_6) all intersecting at one point o (wrist center)
 - 1. Choose z_3 axis (axis of rotation for joint 4)
 - 2. Choose z_4 axis (axis of rotation for joint 5)
 - 3. Choose z_5 axis (axis of rotation for joint 6)
 - 4. Choose tool frame:
 - z₆ (a) is collinear with z₅
 - y_6 (s) is in the direction the gripper closes
 - $x_6(n)$ is chosen with a right-handed convention

Example 3: spherical wrist

- Now define DH parameters
 - First, define the constant parameters a_i , α_i
 - Second, define the variable parameters θ_i , d_i

$$A_4 = \begin{bmatrix} c_4 & 0 & -s_4 & 0 \\ s_4 & 0 & c_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_5 = \begin{bmatrix} c_5 & 0 & -s_5 & 0 \\ s_5 & 0 & c_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_6 = \begin{bmatrix} c_6 & -s_6 & 0 & 0 \\ s_6 & c_6 & 0 & 0 \\ 0 & 0 & 1 & d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

link	a _i	α_i	d _i	θ_{i}
4	0	-90	0	θ_4
5	0	90	0	θ_5
6	0	0	d_6	θ_6

$$T_6^3 = A_4 A_5 A_6 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 c_6 & c_5 & c_5 d_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Example 4: cylindrical robot with spherical wrist

- 6DOF: need to assign seven coordinate frames
 - But we already did this for the previous two examples, so we can fill in the table of DH parameters:

link	a _i	α_i	d _i	θ_{i}
1	0	0	d_1	θ_1
2	0	-90	d_2	0
3	0	0	d_3	0
4	0	-90	0	θ_4
5	0	90	0	θ_5
6	0	0	d_6	θ_6

Example 4: cylindrical robot with spherical wrist

Note that z_3 (axis for joint 4) is collinear with z_2 (axis for joint 3), thus we can make the following combination:

$$\begin{array}{c}
r_{11} = c_1 c_4 c_5 c_6 - c_1 s_4 s_6 + s_1 s_5 c_6 \\
r_{21} = s_1 c_4 c_5 c_6 - s_1 s_4 s_6 - c_1 s_5 c_6 \\
r_{31} = -s_4 c_5 c_6 - c_4 s_6 \\
r_{12} = -c_1 c_4 c_5 s_6 - c_1 s_4 c_6 - s_1 s_5 c_6 \\
r_{22} = -s_1 c_4 c_5 s_6 - s_1 s_4 s_6 + c_1 s_5 c_6 \\
r_{32} = s_4 c_5 c_6 - c_4 c_6 \\
r_{13} = c_1 c_4 s_5 - s_1 c_5 \\
r_{23} = s_1 c_4 s_5 + c_1 c_5 \\
r_{23} = s_1 c_4 s_5 d_6 - s_1 c_5 d_6 - s_1 d_3 \\
d_x = c_1 c_4 s_5 d_6 + c_1 c_5 d_6 + c_1 d_3 \\
d_z = -s_4 s_5 d_6 + d_1 + d_2
\end{array}$$

Example 5: the Stanford manipulator

- 6DOF: need to assign seven coordinate frames:
 - 1. Choose z_0 axis (axis of rotation for joint 1, base frame)
 - 2. Choose z_1 - z_5 axes (axes of rotation/translation for joints 2-6)
 - 3. Choose x_i axes
 - 4. Choose tool frame
 - 5. Fill in table of DH parameters:

link	a _i	α_i	d _i	θ_{i}
1	0	-90	0	θ_1
2	0	90	d_2	θ_2
3	0	0	d_3	0
4	0	-90	0	θ_4
5	0	90	0	θ_5
6	0	0	d_6	θ_6

ES159/259

Example 5: the Stanford manipulator

Now determine the individual homogeneous transformations:

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 5: the Stanford manipulator

Finally, combine to give the complete description of the forward kinematics:

$$T_6^0 = A_1 \cdots A_6 = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{0} = A_{1} \cdots A_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{0} = A_{1} \cdots A_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 6: the SCARA manipulator

- 4DOF: need to assign five coordinate frames:
 - 1. Choose z_0 axis (axis of rotation for joint 1, base frame)
 - 2. Choose z_1 - z_3 axes (axes of rotation/translation for joints 2-4)
 - 3. Choose x_i axes
 - 4. Choose tool frame
 - 5. Fill in table of DH parameters:

link	a _i	α_i	d_i	θ_{i}
1	a ₁	0	0	θ_1
2	a ₂	180	0	θ_2
3	0	0	d_3	0
4	0	0	d_4	θ_4

Example 6: the SCARA manipulator

Now determine the individual homogeneous transformations:

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^0 = A_1 \cdots A_4 = \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics of parallel manipulators

- Parallel manipulator: two or more series chains connect the endeffector to the base (closed-chain)
- # of DOF for a parallel manipulator determined by taking the total DOFs for all links and subtracting the number of constraints imposed by the closed-chain configuration
- Gruebler's formula (3D):

Forward kinematics of parallel manipulators

• Gruebler's formula (2D):

#DOF =
$$3(n_L - n_j) + \sum_{i=1}^{n_j} f_i$$

- Example (2D):
 - Planar four-bar, $n_L = 3$, $n_i = 4$, $f_i = 1$ (for all joints)
 - 3(3-4)+4 = 1DOF
 - Forward kinematics:

$$\theta = \cos^{-1} \left(\frac{\delta^2 - 2\delta + 2L_2^2}{2\sqrt{(L_1 - \delta)^2 + L_2^2}} \right) + \tan^{-1} \left(\frac{L_2}{L_1 - \delta} \right) - \frac{\pi}{2}$$

Inverse Kinematics

- Find the values of joint parameters that will put the tool frame at a desired position and orientation (within the workspace)
 - Given *H*: $H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \in SE(3)$
 - Find all solutions to:

$$T_n^0(q_1,...,q_n) = H$$

– Noting that:

$$T_n^0(q_1,\ldots,q_n)=A_1(q_1)\cdots A_n(q_n)$$

This gives 12 (nontrivial) equations with n unknowns

Example: the Stanford manipulator

• For a given *H*:

$$H = \begin{bmatrix} 0 & 1 & 0 & -0.154 \\ 0 & 0 & 1 & 0.763 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Find θ_1 , θ_2 , d_3 , θ_4 , θ_5 , θ_6 :

$$c_{1}[c_{2}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{2}s_{5}c_{6}] - d_{2}(s_{4}c_{5}c_{6} + c_{4}s_{6}) = 0$$

$$s_{1}[c_{2}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{2}s_{5}c_{6}] + c_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6}) = 0$$

$$- s_{2}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - c_{2}s_{5}c_{6} = 1$$

$$c_{1}[-c_{2}(c_{4}c_{5}s_{6} + s_{4}c_{6}) + s_{2}s_{5}s_{6}] - s_{1}(-s_{4}c_{5}s_{6} + c_{4}c_{6}) = 1$$

$$- s_{1}[-c_{2}(c_{4}c_{5}s_{6} - s_{4}c_{6}) - s_{2}s_{5}s_{6}] + c_{1}(-s_{4}c_{5}s_{6} + c_{4}s_{6}) = 0$$

$$s_{2}(c_{4}c_{5}s_{6} + s_{4}c_{6}) + c_{2}s_{5}s_{6} = 0$$

$$c_{1}(c_{2}c_{4}s_{5} + s_{2}c_{5}) - s_{1}s_{4}s_{5} = 0$$

$$s_{1}(c_{2}c_{4}s_{5} + s_{2}c_{5}) + c_{1}s_{4}s_{5} = 1$$

$$- s_{2}c_{4}s_{5} + c_{2}c_{5} = 0$$

$$c_{1}s_{2}d_{3} - s_{1}d_{2} + d_{6}(c_{1}c_{2}c_{4}s_{5} + c_{1}c_{5}s_{2} - s_{1}s_{4}s_{5}) = -0.154$$

$$s_{1}s_{2}d_{3} + c_{1}d_{2} + d_{6}(c_{1}s_{4}s_{5} + c_{2}c_{4}s_{1}s_{5} + c_{5}s_{1}s_{2}) = 0.763$$

$$c_{2}d_{3} + d_{6}(c_{2}c_{5} - c_{4}s_{2}s_{5}) = 0$$

• One solution: $\theta_1 = \pi/2$, $\theta_2 = \pi/2$, $d_3 = 0.5$, $\theta_4 = \pi/2$, $\theta_5 = 0$, $\theta_6 = \pi/2$

Inverse Kinematics

- The previous example shows how difficult it would be to obtain a closed-form solution to the 12 equations
- Instead, we develop systematic methods based upon the manipulator configuration
- For the forward kinematics there is always a unique solution
 - Potentially complex nonlinear functions
- The inverse kinematics may or may not have a solution
 - Solutions may or may not be unique
 - Solutions may violate joint limits
- Closed-form solutions are ideal!

Overview: kinematic decoupling

- Appropriate for systems that have an arm a wrist
 - Such that the wrist joint axes are aligned at a point
- For such systems, we can split the inverse kinematics problem into two parts:
 - 1. Inverse position kinematics: position of the wrist center
 - 2. Inverse orientation kinematics: orientation of the wrist
- First, assume 6DOF, the last three intersecting at o_c

$$R_6^0(q_1,...,q_6) = R$$

 $O_6^0(q_1,...,q_6) = O$

• Use the position of the wrist center to determine the first three joint angles...

Overview: kinematic decoupling

- Now, origin of tool frame, o_6 , is a distance d_6 translated along z_5 (since z_5 and z_6 are collinear)
 - Thus, the third column of R is the direction of z_6 (w/ respect to the base frame) and we can write: $\lceil 0 \rceil$

$$o = o_6^0 = o_c^0 + d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- Rearranging: $o_c^o = o d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
- Calling $o = [o_x \ o_y \ o_z]^T$, $o_c{}^0 = [x_c \ y_c \ z_c]^T$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

Overview: kinematic decoupling

- Since $[x_c, y_c, z_c]^T$ are determined from the first three joint angles, our forward kinematics expression now allows us to solve for the first three joint angles decoupled from the final three.
 - Thus we now have R_3^0
 - Note that:

$$R = R_3^0 R_6^3$$

To solve for the final three joint angles:

$$R_6^3 = (R_3^0)^{-1} R = (R_3^0)^T R$$

 Since the last three joints for a spherical wrist, we can use a set of Euler angles to solve for them

Inverse position

- Now that we have $[x_c \ y_c \ z_c]^T$ we need to find $q_1, \ q_2, \ q_3$
 - Solve for q_i by projecting onto the x_{i-1} , y_{i-1} plane, solve trig problem
 - Two examples: elbow (RRR) and spherical (RRP) manipulators
 - For example, for an elbow manipulator, to solve for θ_1 , project the arm onto the x_0 , y_0 plane

Background: two argument atan

- We use atan2(·) instead of atan(·) to account for the full range of angular solutions
 - Called 'four-quadrant' arctan

$$atan2(y,x) = \begin{cases} -atan2(-y,x) & y < 0 \\ \pi - atan\left(-\frac{y}{x}\right) & y \ge 0, x < 0 \end{cases}$$

$$atan\left(\frac{y}{x}\right) & y \ge 0, x \ge 0$$

$$\frac{\pi}{2} & y > 0, x = 0$$

$$undefined & y = 0, x = 0 \end{cases}$$

Example: RRR manipulator

1. To solve for θ_1 , project the arm onto the x_0 , y_0 plane

$$\theta_1 = \operatorname{atan2}(x_c, y_c)$$

- Can also have: $\theta_1 = \pi + \operatorname{atan2}(x_c, y_c)$
 - This will of course change the solutions for θ_2 and θ_3

Caveats: singular configurations, offsets

- If $x_c = y_c = 0$, θ_1 is undefined
 - i.e. any value of θ_1 will work

- If there is an offset, then we will have two solutions for θ_1 : left arm and right arm
 - However, wrist centers cannot intersect z₀

Left arm and right arm solutions

Left arm:

$$\theta_1 = \phi - \alpha$$

$$\phi = \operatorname{atan2}(x_c, y_c)$$

$$\alpha = \operatorname{atan2}(\sqrt{x_c^2 + {y_c}^2 - d^2}, d)$$

Right arm:

$$\theta_{1} = \alpha + \beta$$

$$\alpha = \operatorname{atan2}(x_{c}, y_{c})$$

$$\beta = \pi + \operatorname{atan2}(\sqrt{x_{c}^{2} + y_{c}^{2} - d^{2}}, d)$$

$$= \operatorname{atan2}(-\sqrt{x_{c}^{2} + y_{c}^{2} - d^{2}}, -d)$$

Left arm and right arm solutions

- Therefore there are in general two solutions for θ_1
- Finding θ_2 and θ_3 is identical to the planar two-link manipulator we have seen previously:

$$\cos \theta_{3} = \frac{r^{2} + s^{2} - a_{2}^{2} - a_{3}^{2}}{2a_{2}a_{3}}$$

$$r^{2} = x_{c}^{2} + y_{c}^{2} - d^{2}$$

$$s = z_{c} - d_{1}$$

$$\Rightarrow \cos \theta_{3} = \frac{x_{c}^{2} + y_{c}^{2} - d^{2} + (z_{c} - d_{1})^{2} - a_{2}^{2} - a_{3}^{2}}{2a_{2}a_{3}} \equiv D$$

• Therefore we can find two solutions for θ_3 :

$$\theta_3 = \operatorname{atan2}\left(D, \pm\sqrt{1-D^2}\right)$$

Left arm and right arm solutions

- The two solutions for θ_3 correspond to the elbow-down and elbow-up positions respectively
- Now solve for θ_2 :

$$\begin{aligned} \theta_2 &= \text{atan2}(r,s) - \text{atan2}(a_2 + a_3 c_3, a_3 s_3) \\ &= \text{atan2}\Big(\sqrt{{x_c}^2 + {y_c}^2 - {d}^2}, z_c - d_1\Big) - \text{atan2}(a_2 + a_3 c_3, a_3 s_3) \end{aligned}$$

• Thus there are two solutions for the pair (θ_2, θ_3)

RRR: Four total solutions

 In general, there will be a maximum of four solutions to the inverse position kinematics of an elbow manipulator

ES159/259

Example: RRP manipulator

- Spherical configuration
 - Solve for θ_1 using same method as with RRR

$$\theta_1 = \operatorname{atan2}(x_c, y_c)$$

- Again, if there is an offset, there
 will be left-arm and right-arm solutions
- Solve for θ_2 :

$$\theta_2 = \operatorname{atan2}(s, r)$$

$$r^2 = x_c^2 + y_c^2$$

$$s = z_c - d_1$$

- Solve for d_3 :

$$d_3 = \sqrt{r^2 + s^2}$$

$$= \sqrt{x_c^2 + y_c^2 + (z_c - d_1)^2}$$

Next class...

- Complete the discussion of inverse kinematics
 - Inverse orientation
 - Introduction to other methods
- Introduction to velocity kinematics and the Jacobian