Ch. 3: Forward and Inverse Kinematics

Updates

- Document clarifying the Denavit-Hartenberg convention is posted
- Labs and section times announced
- If you haven't already, please forward your availability to Shelten \& Ben
- Matlab review session Tuesday 2/13, 6:00 MD 221

Recap: The Denavit-Hartenberg (DH) Convention

- Representing each individual homogeneous transformation as the product of four basic transformations:

$$
\begin{aligned}
A_{i} & =\text { Rot }_{z, \theta_{i}} \text { Trans }_{z, d_{i}} \text { Trans }_{x, a_{i}} \text { Rot }_{x, \alpha_{i}} \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Recap: the physical basis for DH parameters

- a_{i} : link length, distance between the o_{0} and o_{1} (projected along x_{1})
- α_{i} : link twist, angle between z_{0} and z_{1} (measured around x_{1})
- d_{i} : link offset, distance between o_{0} and o_{1} (projected along z_{0})
- $\quad \theta_{i}$: joint angle, angle between x_{0} and x_{1} (measured around z_{0})

General procedure for determining forward kinematics

1. Label joint axes as z_{0}, \ldots, z_{n-1} (axis z_{i} is joint axis for joint $i+1$)
2. Choose base frame: set o_{0} on z_{0} and choose x_{0} and y_{0} using righthanded convention
3. For $i=1: n-1$,
i. Place o_{i} where the normal to z_{i} and z_{i-1} intersects z_{i}. If z_{i} intersects z_{i-1}, put o_{i} at intersection. If z_{i} and z_{i-1} are parallel, place o_{i} along z_{i} such that $d_{i}=0$
ii. $\quad x_{i}$ is the common normal through o_{i}, or normal to the plane formed by z_{i-1} and z_{i} if the two intersect
iii. Determine y_{i} using right-handed convention
4. Place the tool frame: set z_{n} parallel to z_{n-1}
5. For $i=1: n$, fill in the table of DH parameters
6. Form homogeneous transformation matrices, A_{i}
7. Create $T_{n}{ }^{0}$ that gives the position and orientation of the end-effector in the inertial frame

Example 2: three-link cylindrical robot

- 3DOF: need to assign four coordinate frames

1. Choose z_{0} axis (axis of rotation for joint 1, base frame)
2. Choose z_{1} axis (axis of translation for joint 2)
3. Choose z_{2} axis (axis of translation for joint 3)
4. Choose z_{3} axis (tool frame)

- This is again arbitrary for this case since we have described no wrist/gripper
- Instead, define z_{3} as parallel to z_{2}

Example 2: three-link cylindrical robot

- Now define DH parameters
- First, define the constant parameters a_{i}, α_{i}
- Second, define the variable parameters θ_{i}, d_{i}

$$
\begin{aligned}
A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right], A_{2} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right], A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
T_{3}^{0}=A_{1} A_{2} A_{3} & =\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	0	d_{1}	θ_{1}
2	0	-90	d_{2}	0
3	0	0	d_{3}	0

Example 3: spherical wrist

- 3DOF: need to assign four coordinate frames
- yaw, pitch, roll $\left(\theta_{4}, \theta_{5}, \theta_{6}\right)$ all intersecting at one point o (wrist center)

1. Choose z_{3} axis (axis of rotation for joint 4)
2. Choose z_{4} axis (axis of rotation for joint 5)
3. Choose z_{5} axis (axis of rotation for joint 6)
4. Choose tool frame:

- $z_{6}(a)$ is collinear with z_{5}
- $y_{6}(s)$ is in the direction the gripper closes
- $x_{6}(n)$ is chosen with a right-handed convention

ES159/259

Example 3: spherical wrist

- Now define DH parameters
- First, define the constant parameters a_{i}, α_{i}
- Second, define the variable parameters θ_{i}, d_{i}

$$
A_{4}=\left[\begin{array}{cccc}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{5}=\left[\begin{array}{cccc}
c_{5} & 0 & -s_{5} & 0 \\
s_{5} & 0 & c_{5} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{6}=\left[\begin{array}{cccc}
c_{6} & -s_{6} & 0 & 0 \\
s_{6} & c_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}
5	0	90	0	θ_{5}
6	0	0	d_{6}	θ_{6}

$T_{6}^{3}=A_{4} A_{5} A_{6}=\left[\begin{array}{cccc}c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\ s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\ -s_{5} c_{6} & s_{5} c_{6} & c_{5} & c_{5} d_{6} \\ 0 & 0 & 0 & 1\end{array}\right]$

ES159/259

Example 4: cylindrical robot with spherical wrist

- 6DOF: need to assign seven coordinate frames
- But we already did this for the previous two examples, so we can fill in the table of DH parameters:

Example 4: cylindrical robot with spherical wrist

- Note that z_{3} (axis for joint 4) is collinear with z_{2} (axis for joint 3), thus we can make the following combination:

Example 5: the Stanford manipulator

- 6DOF: need to assign seven coordinate frames:

1. Choose z_{0} axis (axis of rotation for joint 1, base frame)
2. Choose $z_{1}-z_{5}$ axes (axes of rotation/translation for joints 2-6)
3. Choose x_{i} axes
4. Choose tool frame
5. Fill in table of DH parameters:

link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	-90	0	θ_{1}
2	0	90	d_{2}	θ_{2}
3	0	0	d_{3}	0
4	0	-90	0	θ_{4}
5	0	90	0	θ_{5}
6	0	0	d_{6}	θ_{6}

Example 5: the Stanford manipulator

- Now determine the individual homogeneous transformations:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right], A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{4}=\left[\begin{array}{cccc}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{5}=\left[\begin{array}{cccc}
c_{5} & 0 & s_{5} & 0 \\
s_{5} & 0 & -c_{5} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{6}=\left[\begin{array}{cccc}
c_{6} & -s_{6} & 0 & 0 \\
s_{6} & c_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 5: the Stanford manipulator

- Finally, combine to give the complete description of the forward kinematics:

$$
T_{6}^{0}=A_{1} \cdots A_{6}=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & d_{x} \\
r_{21} & r_{22} & r_{23} & d_{y} \\
r_{31} & r_{32} & r_{33} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
r_{11}=c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-d_{2}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{21}=s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{31}=-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} \\
r_{12}=c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{22}=-s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}-s_{4} c_{6}\right)-s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} s_{6}\right) \\
r_{32}=s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} \\
r_{13}=c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} \\
r_{23}=s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} \\
r_{33}=-s_{2} c_{4} s_{5}+c_{2} c_{5} \\
d_{x}=c_{1} s_{2} d_{3}-s_{1} d_{2}+d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
d_{y}=s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
d_{z}=c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)
\end{array}\right.
$$

Example 6: the SCARA manipulator

- 4DOF: need to assign five coordinate frames:

1. Choose z_{0} axis (axis of rotation for joint 1, base frame)
2. Choose $z_{1}-z_{3}$ axes (axes of rotation/translation for joints 2-4)
3. Choose x_{i} axes
4. Choose tool frame
5. Fill in table of DH parameters:

link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}
2	a_{2}	180	0	θ_{2}
3	0	0	d_{3}	0
4	0	0	d_{4}	θ_{4}

Example 6：the SCARA manipulator

－Now determine the individual homogeneous transformations：

$$
\begin{gathered}
A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right], A_{4}=\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right] \\
T_{4}^{0}=A_{1} \cdots A_{4}=\left[\begin{array}{cccc}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & -d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Forward kinematics of parallel manipulators

- Parallel manipulator: two or more series chains connect the endeffector to the base (closed-chain)
- \# of DOF for a parallel manipulator determined by taking the total DOFs for all links and subtracting the number of constraints imposed by the closed-chain configuration
- Gruebler's formula (3D):

Forward kinematics of parallel manipulators

- Gruebler's formula (2D):

$$
\text { \#DOF }=3\left(n_{L}-n_{j}\right)+\sum_{i=1}^{n_{j}} f_{i}
$$

- Example (2D):
- Planar four-bar, $n_{L}=3, n_{j}=4, f_{i}=1$ (for all joints)
- 3(3-4)+4 = 1DOF
- Forward kinematics:

$$
\theta=\cos ^{-1}\left(\frac{\delta^{2}-2 \delta+2 L_{2}^{2}}{2 \sqrt{\left(L_{1}-\delta\right)^{2}+L_{2}^{2}}}\right)+\tan ^{-1}\left(\frac{L_{2}}{L_{1}-\delta}\right)-\frac{\pi}{2}
$$

Inverse Kinematics

- Find the values of joint parameters that will put the tool frame at a desired position and orientation (within the workspace)
- Given H :

$$
H=\left[\begin{array}{ll}
R & 0 \\
0 & 1
\end{array}\right] \in S E(3)
$$

- Find all solutions to:

$$
T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=H
$$

- Noting that:

$$
T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=A_{1}\left(q_{1}\right) \cdots A_{n}\left(q_{n}\right)
$$

- This gives 12 (nontrivial) equations with n unknowns

Example: the Stanford manipulator

- For a given H :

$$
H=\left[\begin{array}{cccc}
0 & 1 & 0 & -0.154 \\
0 & 0 & 1 & 0.763 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Find $\theta_{1}, \theta_{2}, d_{3}, \theta_{4}, \theta_{5}, \theta_{6}$:

$$
\begin{aligned}
c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-d_{2}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) & =0 \\
s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) & =0 \\
-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} & =1 \\
c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) & =1 \\
-s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}-s_{4} c_{6}\right)-s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} s_{6}\right) & =0 \\
s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} & =0 \\
c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} & =0 \\
s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} & =1 \\
-s_{2} c_{4} s_{5}+c_{2} c_{5} & =0 \\
c_{1} s_{2} d_{3}-s_{1} d_{2}+d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) & =-0.154 \\
s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) & =0.763 \\
c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right) & =0
\end{aligned}
$$

- One solution: $\theta_{1}=\pi / 2, \theta_{2}=\pi / 2, d_{3}=0.5, \theta_{4}=\pi / 2, \theta_{5}=0, \theta_{6}=\pi / 2$

Inverse Kinematics

- The previous example shows how difficult it would be to obtain a closed-form solution to the 12 equations
- Instead, we develop systematic methods based upon the manipulator configuration
- For the forward kinematics there is always a unique solution
- Potentially complex nonlinear functions
- The inverse kinematics may or may not have a solution
- Solutions may or may not be unique
- Solutions may violate joint limits
- Closed-form solutions are ideal!

Overview: kinematic decoupling

- Appropriate for systems that have an arm a wrist
- Such that the wrist joint axes are aligned at a point
- For such systems, we can split the inverse kinematics problem into two parts:

1. Inverse position kinematics: position of the wrist center
2. Inverse orientation kinematics: orientation of the wrist

- First, assume 6DOF, the last three intersecting at o_{c}

$$
\begin{aligned}
& R_{6}^{0}\left(q_{1}, \ldots, q_{6}\right)=R \\
& o_{6}^{0}\left(q_{1}, \ldots, q_{6}\right)=0
\end{aligned}
$$

- Use the position of the wrist center to determine the first three joint angles...

Overview: kinematic decoupling

- Now, origin of tool frame, o_{6}, is a distance d_{6} translated along z_{5} (since z_{5} and z_{6} are collinear)
- Thus, the third column of R is the direction of z_{6} (w/ respect to the base frame) and we can write:

$$
o=o_{6}^{0}=o_{c}^{o}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Rearranging:

$$
\begin{aligned}
& \mathrm{g}: \\
& o_{c}^{o}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], ~
\end{aligned}
$$

- Calling $o=\left[\begin{array}{lll}a_{x} & o_{y} & o_{z}\end{array}\right]^{T}, o_{c}{ }^{0}=\left[\begin{array}{lll}x_{c} & y_{c} & z_{c}\end{array}\right]^{T}$

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
$$

Overview: kinematic decoupling

- Since $\left[x_{c} y_{c} z_{c}\right]^{T}$ are determined from the first three joint angles, our forward kinematics expression now allows us to solve for the first three joint angles decoupled from the final three.
- Thus we now have $R_{3}{ }^{0}$
- Note that:

$$
R=R_{3}^{0} R_{6}^{3}
$$

- To solve for the final three joint angles:

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{\top} R
$$

- Since the last three joints for a spherical wrist, we can use a set of Euler angles to solve for them

Inverse position

－Now that we have $\left[x_{c} y_{c} z_{c}\right]^{T}$ we need to find q_{1}, q_{2}, q_{3}
－Solve for q_{i} by projecting onto the x_{i-1}, y_{i-1} plane，solve trig problem
－Two examples：elbow（RRR）and spherical（RRP）manipulators
－For example，for an elbow manipulator，to solve for θ_{1} ，project the arm onto the x_{0}, y_{0} plane

Background: two argument atan

- We use atan2(•) instead of atan(•) to account for the full range of angular solutions
- Called 'four-quadrant' arctan

$$
\operatorname{atan} 2(y, x)=\left\{\begin{array}{cc}
-\operatorname{atan} 2(-y, x) & y<0 \\
\pi-\operatorname{atan}\left(-\frac{y}{x}\right) & y \geq 0, x<0 \\
\operatorname{atan}\left(\frac{y}{x}\right) & y \geq 0, x \geq 0 \\
\frac{\pi}{2} & y>0, x=0 \\
\text { undefined } & y=0, x=0
\end{array}\right.
$$

Example: RRR manipulator

1. To solve for θ_{1}, project the arm onto the x_{0}, y_{0} plane

$$
\theta_{1}=\boldsymbol{\operatorname { a t a n }} 2\left(x_{c}, y_{c}\right)
$$

- Can also have: $\theta_{1}=\pi+\boldsymbol{\operatorname { a t a n }} 2\left(x_{c}, y_{c}\right)$
- This will of course change the solutions for θ_{2} and θ_{3}

Caveats: singular configurations, offsets

- If $x_{c}=y_{c}=0, \theta_{1}$ is undefined
- i.e. any value of θ_{1} will work

- If there is an offset, then we will have two solutions for θ_{1} : left arm and right arm
- However, wrist centers cannot intersect z_{0}

Left arm and right arm solutions

- Left arm:

$$
\begin{aligned}
\theta_{1} & =\phi-\alpha \\
\phi & =\boldsymbol{\operatorname { a t a n }} 2\left(x_{c}, y_{c}\right) \\
\alpha & =\boldsymbol{\operatorname { a t a n }} 2\left(\sqrt{x_{c}{ }^{2}+y_{c}^{2}-d^{2}}, d\right)
\end{aligned}
$$

- Right arm:

$$
\begin{aligned}
\theta_{1} & =\alpha+\beta \\
\alpha & =\boldsymbol{\operatorname { t a n }} 2\left(x_{c}, y_{c}\right) \\
\beta & =\pi+\boldsymbol{\operatorname { a t a n } 2} 2\left(\sqrt{x_{c}{ }^{2}+y_{c}{ }^{2}-d^{2}}, d\right) \\
& =\boldsymbol{\operatorname { a t a n } 2} 2\left(-\sqrt{x_{c}{ }^{2}+y_{c}{ }^{2}-d^{2}},-d\right)
\end{aligned}
$$

Left arm and right arm solutions

- Therefore there are in general two solutions for θ_{1}
- Finding θ_{2} and θ_{3} is identical to the planar two-link manipulator we have seen previously:

$$
\begin{aligned}
\cos \theta_{3} & =\frac{r^{2}+s^{2}-a_{2}^{2}-a_{3}{ }^{2}}{2 a_{2} a_{3}} \\
r^{2} & =x_{c}{ }^{2}+y_{c}{ }^{2}-d^{2} \\
s & =z_{c}-d_{1} \\
& \Rightarrow \cos \theta_{3}=\frac{x_{c}{ }^{2}+y_{c}{ }^{2}-d^{2}+\left(z_{c}-d_{1}\right)^{2}-a_{2}{ }^{2}-a_{3}{ }^{2}}{2 a_{2} a_{3}} \equiv D
\end{aligned}
$$

- Therefore we can find two solutions for θ_{3} :

$$
\theta_{3}=\operatorname{atan} 2\left(D, \pm \sqrt{1-D^{2}}\right)
$$

Left arm and right arm solutions

- The two solutions for θ_{3} correspond to the elbow-down and elbow-up positions respectively
- Now solve for θ_{2} :

$$
\begin{aligned}
\theta_{2} & =\boldsymbol{\operatorname { t a n }} 2(r, s)-\boldsymbol{\operatorname { t a n } 2} 2\left(a_{2}+a_{3} c_{3}, a_{3} s_{3}\right) \\
& =\boldsymbol{\operatorname { t a n }} 2\left(\sqrt{x_{c}^{2}+y_{c}^{2}-d^{2}}, z_{c}-d_{1}\right)-\boldsymbol{\operatorname { t a n }} 2\left(a_{2}+a_{3} c_{3}, a_{3} s_{3}\right)
\end{aligned}
$$

- Thus there are two solutions for the pair $\left(\theta_{2}, \theta_{3}\right)$

RRR: Four total solutions

- In general, there will be a maximum of four solutions to the inverse position kinematics of an elbow manipulator
- Ex: PUMA

Left Arm Elbow Up

Right Arm Elbow Up

Left Arm Elbow Down

Right Arm Elbow Down

ES159/259

Example: RRP manipulator

- Spherical configuration
- Solve for θ_{1} using same method as with RRR

$$
\theta_{1}=\boldsymbol{\operatorname { a t a n }} 2\left(x_{c}, y_{c}\right)
$$

- Again, if there is an offset, there
will be left-arm and right-arm solutions
- Solve for θ_{2} :

$$
\begin{aligned}
\theta_{2} & =\boldsymbol{\operatorname { a t a n }} 2(s, r) \\
r^{2} & =x_{c}{ }^{2}+y_{c}{ }^{2} \\
s & =z_{c}-d_{1}
\end{aligned}
$$

- Solve for d_{3} :

$$
\begin{aligned}
d_{3} & =\sqrt{r^{2}+s^{2}} \\
& =\sqrt{x_{c}{ }^{2}+y_{c}{ }^{2}+\left(z_{c}-d_{1}\right)^{2}}
\end{aligned}
$$

Next class...

- Complete the discussion of inverse kinematics
- Inverse orientation
- Introduction to other methods
- Introduction to velocity kinematics and the Jacobian

